Regra Prática para Calcular o MMC
A regra prática pra calcular o MMC, mínimo múltiplo comum, consiste em fatorar todos os números desejados num mesmo instante.
Para sabermos o múltiplo de um número, basta multiplicá-lo por outro número. Observe os múltiplos do número 2:
2 x 1 = 2
2 x 2 = 4
2 x 3 = 6
2 x 4 = 8
2 x 5 = 10
2 x 10 = 20
2 x 20 = 40
... ... ...
Vamos observar os múltiplos do número 3:
3 x 1 = 3
3 x 2 = 6
3 x 3 = 9
3 x 4 = 12
3 x 5 = 15
3 x 6 = 18
3 x 10 = 30
Vale ressaltar que os múltiplos de um número são infinitos. No caso do MMC (mínimo múltiplo comum) entre números naturais, podemos determinar o menor múltiplo aos números dados, de duas maneiras distintas. A primeira consiste em determinar alguns dos múltiplos dos números verificando o menor comum, ou aplicar a regra prática que consiste em fatorar todos os números num mesmo instante. Conheça a 1ª maneira:
Vamos determinar o MMC entre os números 12, 18 e 24
12 = (12, 24, 36, 48, 60, 72, 84, 96, ...)
18 = (18, 36, 54, 72, 90, 108, ...)
24 = (24, 48, 72, 96, 120, 144, ...)
Observe que dentre os múltiplos descritos, podemos verificar que o número 72 é o menor múltiplo comum aos algarismos 12, 18 e 24.
A 2ª regra consiste em determinar o mínimo múltiplo comum fatorando todos os números de uma única vez. Lembrando que fatorar significa dividir os números por algarismos primos em ordem crescente. Observe o cálculo do MMC entre os números 12, 18 e 34.
M.M.C. (12, 18, 24) = 2 x 2 x 2 x 3 x 3 = 72
O mínimo múltiplo comum dos números 12, 18 e 24 é igual a 72.
Os números são alinhados e divididos no mesmo instante. Após a divisão basta multiplicar todos os primos obtidos. O produto entre eles será o mínimo múltiplo comum.
Aplicando a 2ª regra na determinação do MMC entre os números 15, 25 e 70.
M.M.C. (15, 25, 70) = 2 x 3 x 5 x 5 x 7 = 1 050
O mínimo múltiplo comum dos números 15, 25 e 70 é igual a 1 050.
Publicado por Marcos Noé Pedro da Silva
Matemática do Zero
Matemática do Zero | Moda e Mediana
Nessa aula veremos como calcular a moda e a mediana de uma amostra. Mosrarei que a moda é o elemento que possui maior frequência e que uma amostra pode ter mais de uma moda ou não ter moda. Posteriormente, veremos que para calcular a mediana devemos montar o hall (organizar em ordem a amostra) e verificar a quantidade de termos dessa amostra.
Últimas notícias
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos
Biologia Evolutiva
Neodarwinismo
Essa teoria explica os processos evolutivos propostos na teoria da evolução de Darwin.
Febre
Se caracteriza por ser uma elevação da temperatura do corpo a níveis superiores que os normais, saiba mais.
Ciclo de Krebs
O ciclo de Krebs, é uma das etapas do processo de respiração celular.
Álgebra
A álgebra é a área da Matemática que estuda as operações com variáveis.
Proporção áurea
A proporção áurea é um conceito matemático que representa uma relação estética e harmônica que é considerada visualmente agradável.
Primeira fórmula de Moivre
A primeira fórmula de Moivre é usada para calcular potências de números complexos na forma polar ou trigonométrica.
População
Demografia
A demografia é uma ciência que realiza diversos estudos populacionais.
Geopolítica
Nova Ordem Mundial
Período geopolítico vivenciado pela sociedade planetária após o fim da Guerra Fria.
Tipos de indústria
Conheça alguns tipos de indústria de base.
Fontes de energia
Energia das Marés
Entenda como a força gravitacional do Sol e da Lua interferem nas marés.
Mecânica
Plano inclinado com atrito
Decompor as forças é uma das etapas para cálculos que envolvem o plano inclinado com atrito.
Ondulatória
Função de onda
Ao estudarmos as ondas vimos que elas têm origem em meios elásticos, como em cordas, na superfície da água, do ar, entenda.
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.