Whatsapp icon Whatsapp

Casos Equiprováveis

Nos espaços amostrais equiprováveis temos que os eventos possuem probabilidades iguais de ocorrência. No lançamento de um dado temos que a ocorrência de cada face é a mesma, isto é 1/6. Nesses casos, calculamos a probabilidade de um evento ocorrer relacionando o número de casos favoráveis com o número de casos possíveis.

Exemplo 1

Ao lançarmos por duas vezes sucessivas um dado, qual a probabilidade de:

a) ocorrer 2 no primeiro lançamento e um número impar no segundo?

Precisamos que aconteça o seguinte evento: (2,1), (2,3), (2,5). Assim, temos que a probabilidade é de 3 chances em 36.

P(E) = 3/36 = 1/12.

b) a multiplicação entre os números for maior que 10?
(2,6), (3,4), (3,5), (3,6), (4,3), (4,4), (4,5), (4,6), (5,3), (5,4), (5,5), (5,6), (6,2), (6,3), (6,4), (6,5).

P(E) = 16/36 = 4/9

Exemplo 2

Sorteando ao acaso um número de 1 a 50, qual a probabilidade de sair um múltiplo de 4?

Temos que os múltiplos de 4 compreendidos entre 1 e 50, são: {4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48}, então:

P(E) =12/50 = 6/25


Exemplo 3

Uma urna contém 100 bolas numeradas de 1 a 100. Uma delas é extraída ao acaso. Qual é a probabilidade de o número sorteado ser:

a) 18?
P(E) = 1/100

b) maior que 63?
P(E) = 37/100

c) formado por dois algarismos
P(E) = 90/100 = 9/10



Exemplo 4

Um baralho possui 52 cartas. Uma delas é extraída ao acaso. Qual é a probabilidade de ser sorteada:

a) a carta com o rei de copas?
P(E) = 1/52

b) uma carta de espadas.
O baralho é formado por quatro naipes: copas, ouro, espadas, paus. Dessa forma temos 13 cartas de copas, 13 cartas de ouro, 13 cartas de espadas e 13 cartas de paus. A probabilidade de retirar uma carta de espadas é dada por:
P(E) = 13/52 = 1/4

c) uma carta que não seja o 6?
Cada número está associado a um naipe, portanto, temos quatro cartas com numeração 6. Então 52 – 4 = 48
P(E) = 48/52 = 12/13

Não pare agora... Tem mais depois da publicidade ;)
Publicado por Marcos Noé Pedro da Silva
video icon
Escrito"Matemática do Zero | Moda e Mediana" em fundo azul.
Matemática do Zero
Matemática do Zero | Moda e Mediana
Nessa aula veremos como calcular a moda e a mediana de uma amostra. Mosrarei que a moda é o elemento que possui maior frequência e que uma amostra pode ter mais de uma moda ou não ter moda. Posteriormente, veremos que para calcular a mediana devemos montar o hall (organizar em ordem a amostra) e verificar a quantidade de termos dessa amostra.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Pessoa com as pernas na água
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
video icon
fone de ouvido, bandeira do reino unido e caderno escrito "ingles"
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
video icon
três dedos levantados
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.