Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Função
  4. Notação de função

Notação de função

Sabe-se que função é uma relação entre os elementos de dois conjuntos. Sendo que cada elemento do primeiro conjunto é chamado de domínio e cada um deles possui apenas uma imagem, que são todos ou alguns elementos do outro conjunto.

Veja um exemplo:



Esse diagrama representa uma função de A em B, onde cada elemento do conjunto A está associado apenas com um elemento do conjunto B. Podemos dizer então que o domínio, imagem e contradomínio dessa função é:

D(f) = {-1, 0, 1, 2} ou o próprio conjunto A (D (f) = A).

Im (f) = {-6, 9, 4, -1}

CD (f) = {-6, 10, 9, 4, -1} ou o próprio conjunto B.

Uma função é representada por qualquer letra do alfabeto A, B, f, g e etc. Para existir uma relação entre dois conjuntos é preciso haver uma regra.

Quando fazemos uma relação entre dois conjuntos formamos pares ordenados (x, y). O primeiro valor (ordenada) é o valor da função, o valor de x é representado por f (x), conhecido também como domínio da função.
O valor da imagem irá depender do valor que o x irá assumir.

Dada a função f(x) = - 3x – 3, calcule as suas imagens para cada domínio:
D (f) = {-1, 0, 1, 2}

Para x = -1
f(x) = - 3x – 3
y = - 3 . (-1) – 3
y = 3 – 3
y = 0

Para x = 0
f(x) = - 3x – 3
y = - 3 . 0 – 3
y = -3


Para x = 1
f(x) = - 3x – 3
y = - 3 . 1 – 3
y = - 3 – 3
y = - 6

Para x = 2
f(x) = - 3x – 3
y = - 3 . 2 – 3
y = - 6 – 3
y = - 9

Com os valores de x e y formamos pares ordenados: (-1, 0), (0, -3), (1, -6), (2, -9), e tiramos o domínio e a imagem da função.
D(f) = {-1, 0, 1, 2}
Im (f) = {0, -3, -6, -9}.
Publicado por: Danielle de Miranda
Assuntos relacionados
Propriedades de uma função
Função, tipos de função, propriedade da função, função bijetora, função sobrejetora, função injetora, características de uma função, características de uma função sobrejetora, características de uma função injetora, características de uma função bijetora.
Gráfico de uma Função do 1º grau
Representação gráfica de uma função do 1º grau.