Whatsapp icon Whatsapp

Relações de Girard nas equações do 3º e do 4º grau

As fundamentações de Girard são responsáveis pela relação existente entre os coeficientes de uma equação algébrica e suas raízes. Na equação do 2º grau, as relações são obtidas por meio das fórmulas da soma e do produto: – b/a e c/a, respectivamente.

As equações do 3º grau possuem como lei de formação a equação algébrica: ax³ + bx² + cx + d = 0, com a ≠ 0 e raízes x1, x2 e x3. A decomposição dessa equação permite a determinação de expressões matemáticas capazes de relacionar as raízes da equação. Observe:

ax³ + bx² + cx + d = a[x³ – (x1+x2+x3)x² + (x1*x2 + x1*x3 + x2*x3) – x1*x2*x3

Dividindo a equação por a, temos:

 

Realizando a igualdade entre os polinômios:

x1 + x2 + x3 = – b/a

x1 * x2 + x1 * x3 + x2 * x3 = c/a

x1 * x2 * x3 = – d/a


Os polinômios do 4º grau possuem a seguinte lei de formação: ax4 + bx³ + cx² + dx + e = 0. Nessa equação polinomial temos, no máximo, a existência de quatro possíveis raízes, as quais quando relacionadas, formam as seguintes expressões:


x1 + x2 + x3 + x4 = – b/a

x1 * x2 + x1 * x3 + x1 * x4 + x2 * x3 + x2 * x4 + x3 * x4 = c/a

x1 * x2 * x3 + x1 * x2 * x4 + x1 * x3 * x4 + x2 * x3 * x4 = – d/a

x1 * x2 * x3 * x4 = e/a


Exemplo

Determine as relações de Girard para a equação algébrica: x³ + 7x² – 6x + 1 = 0, considerando x1, x2 e x3, as raízes da equação.

Na equação, temos que: a = 1, b = 7, c = – 6 e d = 1.

x1 + x2 + x3 = – b/a = –7/1 = –7

x1 * x2 + x1 * x3 + x2 * x3 = c/a = –6/1 = – 6

x1 * x2 * x3 = – d/a = –1/1 = –1

Não pare agora... Tem mais depois da publicidade ;)
Publicado por Marcos Noé Pedro da Silva

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Pessoa com as pernas na água
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
video icon
fone de ouvido, bandeira do reino unido e caderno escrito "ingles"
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
video icon
três dedos levantados
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.