Anagrama

Para obter o cálculo de um anagrama é necessário utilizar a propriedade fundamental da contagem.

O anagrama é um jogo de palavras que utiliza a transposição ou rearranjo de letras de uma palavra ou frase, com o intuito de formar outras palavras com ou sem sentido. É calculado através da propriedade fundamental da contagem, utilizando o fatorial de um número de acordo com as condições impostas pelo problema.

Exemplo 1

Vamos determinar os anagramas da palavra:

a) ESCOLA
A palavra possui 6 letras, dessa forma, basta determinarmos o valor de 6! (seis fatorial).
6! = 6 * 5 * 4 * 3 * 2 * 1 = 720

b) ESCOLA que inicia com E e termina com A.
E ___ ___ ___ ___ A
Vamos permutar as 4 letras não fixas.
4! = 4 * 3 * 2 * 1 = 24


Exemplo 2

a) Determinar os anagramas da palavra REPÚBLICA.
A palavra possui 9 letras, então devemos calcular 9!.
9! = 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 = 362.880

b) REPÚBLICA que inicia com R e termina com A.
R ___ ___ ___ ___ ___ ___ ___ A
Vamos permutar as 7 letras não fixadas.
7! = 7 * 6 * 5 * 4 * 3 * 2 * 1 = 5040


Exemplo 3

Determinar os anagramas da palavra CONQUISTA, que tem as letras CON juntas e na mesma ordem: C O N ___ ___ ___ ___ ___ ___ .
Temos 6 letras não fixadas que permutarão entre si, e a expressão CON que se unirá às permutações.
7! = 7 * 6 * 5 * 4 * 3 * 2 * 1 = 5040


Exemplo 4

A palavra MATEMÁTICA é formada por 10 letras. Determine o número possível de anagramas dessa palavra.


Temos que das 10 letras, 3 se repetem. Essas repetições estão nas letras: M, A e T. Nesse caso, devemos retirar a repetição de letras para que a contagem de anagramas não fique comprometida. Para que isso seja feito, devemos dividir a quantidade equivalente ao fatorial do total de letras pelo produto dos fatoriais das repetições. Veja:

Quantidade de repetições das letras: M --> Repeti 2 vezes, logo devemos calcular o 2!
                                                       A --> Repeti 3 vezes, logo devemos calcular o 3!
                                                       T --> Repeti 2 vezes, logo devemos calcular o 2!

Cálculo da quantidade de anagramas da palavra MATEMÁTICA
   10!       = 10 * 9 . 8 * 7 . 6 * 5 * 4 * 3 * 2 * 1 = 3.628.800 = 151200
2! . 3! . 2!      (2 * 1) * ( 3 * 2 * 1) * (2 * 1 )               24

A palavra MATEMÁTICA possui 151200 anagramas.


Exemplo 5

Quantas palavras de 3 letras podemos formar com as letras O, L e A? Quais são essas palavras? As palavras não precisam necessariamente terem siginificado.

A quantidade de palavras será dada por 3!
3 * 2 * 1 = 6 palavras

As palavras são:

OLA
OAL
ALO
AOL
LOA
LAO

Publicado por Marcos Noé Pedro da Silva
Geografia
O Estado de Israel e seus conflitos
Entenda as particularidades do processo de formação do Estado de Israel e os conflitos árabe-israelenses ao longo do século XX.
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos