Equações Exponenciais

Existem equações exponenciais que não podem ser reduzidas a uma igualdade de potências de mesma base. A partir do estudo de logaritmos podemos resolver esse tipo de equação. Para a resolução dessas equações utilizamos a definição de logaritmo:

com 0 < a ≠ 1 e b > 0


Exemplo 1. Resolva a equação 5x = 8.

Solução: Temos que

Observe que o logaritmo possui base 5. As calculadoras usuais só realizam cálculos de logaritmos na base 10 ou neperiana. Dessa fora, precisamos fazer uma mudança de base. Optamos por fazer a mudança para a base 10. Assim,

Logo, x = 1,292
Portanto, S = {1,292}

Exemplo 2. Resolva a equação 9(2x+1) = 13
Solução: Temos que

Fazendo a mudança de base no logaritmo gerado, teremos:

Assim, ficamos com:

Portanto, S = {0,084}

Exemplo 3. Resolva a equação 5-x = 3.
Solução: Sabemos que

Nos exemplos anteriores fizemos a opção por mudar a base do logaritmo para 10. Neste faremos a mudança para a base e (base natural).

Dessa forma,

Assim,


Portanto, S = {-0,682}

Por Marcelo Rigonatto
Especialista em Estatística e Modelagem Matemática

Publicado por Marcelo Rigonatto
Matemática do Zero
Matemática do Zero | Princípio fundamental da contagem
Nessa aula veremos o que é o princípio fundamental da contagem. O princípio fundamental da contagem é uma técnica para calcularmos de quantas maneiras decisões podem combinar-se. Se uma decisão pode ser tomada de n maneiras e outra decisão pode ser tomada de m maneiras, o número de maneiras que essas decisões podem ser tomadas simultaneamente é calculado pelo produto de n · m.
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos