Obtendo uma reta tangente conhecendo um ponto e a circunferência

Existem três possibilidades para a posição relativa de um ponto em relação a uma circunferência. Partindo da análise desta posição, podemos encontrar a equação da reta que tangencia uma determinada circunferência, que contém este ponto analisado. Este estudo quanto à posição relativa dos pontos em relação à circunferência pode ser visto no artigo Posições Relativas De Duas Retas.

Sendo assim, comentaremos sobre cada posição relativa e sua respectiva consequência em relação à reta tangente.

Seja P o ponto que iremos analisar:


• P interno à circunferência, implica dizer que não é possível esboçar uma reta tangente.

• P sendo um ponto da circunferência. Neste caso o ponto P é o ponto de tangência e com isso será possível esboçar apenas uma reta tangente.

• P externo à circunferência. Podemos esboçar duas retas tangentes à circunferência que passam pelo ponto P.



Contudo, para sabermos qual a posição do ponto P em relação à circunferência, devemos calcular a distância do centro da circunferência até o ponto e compararmos ao raio da circunferência, leitura que pode ser vista no artigo citado acima.

Para encontrarmos a equação da reta tangente, iremos utilizar a expressão da distância do centro da circunferência até a reta tangente, distância esta que deve ser igual a r.

Veremos então alguns exemplos que necessitam dessa análise e dos cálculos que devem ser realizados para encontrarmos a equação da reta tangente.

Determine as equações das retas tangentes à circunferência λ: x²+y²=1, traçadas pelo ponto P (√3, 0).

Primeiramente vamos verificar a posição relativa do ponto P em relação à circunferência.

C (0,0) e raio r=1. Com isso, calcularemos a distância do centro até o ponto P.

Sendo P um ponto externo, sabemos que por este ponto podemos traçar duas retas tangentes à circunferência. Neste momento vamos determinar a equação geral da reta tangente.

Para isso, precisamos partir das informações que temos a respeito desta reta, que é somente o ponto que ela passa P (3,0):

Note que precisamos determinar o valor do coeficiente angular (m) para obtermos a equação da reta tangente. Para isso, utilizaremos a expressão da distância do centro até a reta tangente:

Basta substituirmos na equação da reta tangente o valor de m, que iremos obter as duas retas tangentes:

Como vimos, encontramos duas equações de reta, que representam duas retas tangentes que passam pelo ponto P(√3,0) e tangenciam a circunferência λ: x2+y2=1.

Por Gabriel Alessandro de Oliveira
Graduado em Matemática

Publicado por Gabriel Alessandro de Oliveira
Química
pH de soluções
Você já recebeu alguma receita de remédio milagroso pelo grupo da família dizendo que algum alimento de pH isso ou pH aquilo faria bem a sua saúde ou enfermidade? E você sabia interpretar se de fato aquele pH condizia com tal alimento ou substancia referida na receita? Então vem com a gente que nós vamos te explicar o que é pH, como é calculado, medido e a sua importância em nossas vidas.
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos