Soma dos Ângulos Internos de um Polígono Regular

Polígonos são regiões limitadas por segmentos de reta. O encontro dos segmentos de reta formam os vértices e os ângulos da figura. O polígono mais simples é o triângulo, que possui três lados, três vértices e três ângulos.

Veja a tabela com os dados de alguns polígonos regulares.
 

Lados

Ângulos

Vértices

Figura

Triângulo

3

3

3

Quadriátero

4

4

4

Pentágono

5

5

5

Hexágono

6

6

6

Heptágono

7

7

7

A soma dos ângulos internos de um polígono é dada pela expressão:

S = (n – 2 )*180º, onde n = número de lados.

Para calcular o valor de cada ângulo é preciso dividir a soma dos ângulos internos pelo número de lados do polígono.


Exemplo 1
Qual é a soma dos ângulos internos de um heptágono regular?

O heptágono possui 7 lados.
S = (n – 2) * 180º
S = (7 – 2) * 180º
S = 5 * 180º
S = 900º
A soma dos ângulos internos de um heptágono é 900º.

Exemplo 2
Qual a soma dos ângulos internos de um icoságono (20 lados)?

Aplicando a fórmula:
S = (n – 2) * 180º
S = (20 – 2) * 180º
S = 18 * 180º
S = 3240º
A soma dos ângulos internos de um icoságono é 3240º.

Podemos utilizar a fórmula da soma dos ângulos internos para calcular o número de lados de qualquer polígono, desde que a soma dos ângulos internos seja dada.

Exemplo 3
Quantos lados possui um polígono cuja soma dos ângulos internos é igual a 2340º?

S = (n – 2) * 180º
2340º = (n – 2) * 180º
2340º = 180n – 360º
2340 + 360 = 180n
2700 = 180n
180n = 2700
n = 2700/180
n = 15

O polígono possui 15 lados.

A soma dos ângulos externos de qualquer polígono regular é 360º.
Para calcular a medida do ângulo externo de um polígono é preciso dividir 360º pelo número de lados da figura poligonal.

Exemplo 4
Quanto mede o ângulo externo do hexágono?

O hexágono possui seis lados, então:

ai = 360º / 6
ai = 60º

Cada ângulo externo de um hexágono mede 60º.

Publicado por Marcos Noé Pedro da Silva
Matemática
Função Seno
Nesta aula veremos como é o gráfico de uma função seno e analisaremos o valor de máximo, mínimo, amplitude e período dessa função.
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos