Você está aqui
  1. Mundo Educação
  2. Física
  3. Magnetismo
  4. Fontes de campo magnético

Fontes de campo magnético

É comum em nosso dia a dia nos depararmos com objetos que são atraídos por outros: algumas chaves de fenda, por exemplo, têm a propriedade de atrair pequenos materiais de ferro, como parafusos. De acordo com a história das ciências, as primeiras observações feitas em relação a determinadas pedras que possuíam a capacidade de atrair ferro e interagir entre si foram feitas há muitos séculos.

Essas pedras passaram a ser denominadas ímãs; e os fenômenos que espontaneamente se manifestavam foram denominados fenômenos magnéticos. O termo magnetismo é provindo de uma região conhecida como Magnésia, uma província da Grécia onde essas pedras foram encontradas.

Nos estudos sobre magnetismo, vimos que se aproximarmos de uma agulha magnética um ímã, a mesma agulha sofrerá uma deflexão. Dessa forma, podemos dizer que o ímã gera um campo magnético que atua sobre a agulha magnética. Um outro fenômeno foi observado pelo físico Oersted. Ele observou em suas experiências que quando aproximava uma agulha magnética de um fio condutor percorrido por uma corrente elétrica, a agulha também sofria deflexão; e interrompendo-se a corrente elétrica, a agulha voltava à sua posição inicial.

Hoje sabemos que o fato de a agulha sofrer desvio significa que há um campo magnético em volta do fio condutor percorrido por corrente elétrica.

Fontes de campo magnético

Condutor retilíneo

Um condutor percorrido por uma corrente elétrica gera um campo magnético ao seu redor. A configuração desse campo pode ser determinada colocando-se pequenas agulhas magnéticas em pontos dessa região. A equação que nos fornece o campo magnético gerado por um condutor retilíneo percorrido por uma corrente elétrica é a seguinte:

Não pare agora... Tem mais depois da publicidade ;)

Espira circular

O campo magnético gerado por uma espira circular percorrida por corrente elétrica pode ser determinado pela seguinte equação:

As linhas de indução do campo magnético são circunferências perpendiculares ao plano da espira, concêntricas com o condutor.

Bobina chata

Se considerarmos n espiras iguais justapostas, de modo que a espessura do enrolamento seja menor que o diâmetro de cada espira, teremos a chamada bobina chata. Podemos determinar a intensidade do vetor campo magnético no centro da bobina através da equação:

Solenoide

Chamamos de solenoide um condutor longo e enrolado que forma um tubo constituído de espiras igualmente espaçadas. A intensidade do vetor campo magnético no interior de um solenoide é determinada pela seguinte equação:

Onde N/L representa o número de espiras por unidade de comprimento. E, em relação à equação acima, μ representa a permeabilidade magnética do condutor.

A agulha magnética sofre deflexão quando há corrente elétrica no fio condutor
A agulha magnética sofre deflexão quando há corrente elétrica no fio condutor
Publicado por: Domiciano Correa Marques da Silva
Artigo relacionado
Teste agora seus conhecimentos com os exercícios deste texto
Assista às nossas videoaulas
Lista de Exercícios

Questão 1

(UFES) A figura a seguir representa dois fios muito longos, paralelos e perpendiculares ao plano da página. Os fios são percorridos por correntes iguais e no mesmo sentido, saindo do plano da página. O vetor campo magnético no ponto P, indicado na figura, é representado por:

a) ←

b) →

c)↓

d) ↑

e) |B| = 0

Questão 2

(UECE) A figura representa dois fios bastantes longos (1 e 2), perpendiculares ao plano do papel e percorridos por correntes de sentido contrário, i1 e i2, respectivamente.

A condição para que o campo magnético resultante, no ponto P, seja zero é:

a) i1 = i2

b)i1 = 2i2

c) i1 = 3i2

d) i1 = 4i2

Mais Questões
Assuntos relacionados
Fio colocado em um campo magnético: uma força de característica magnética atua sobre ele.
Força magnética em um condutor retilíneo
Um fio condutor fica sujeito à ação de uma força magnética quando é colocado em um campo magnético.
O Sol é o maior emissor de radiação ultravioleta. Graças à camada de ozônio, essa radiação chega à Terra em pequenas quantidades, porém ainda continua
Radiação ultravioleta (UV)
Veja aqui o que é radiação ultravioleta, quais seus malefícios e aprenda a se proteger dessa radiação.
Trata-se da temperatura na qual um material ferromagnético perde suas propriedades magnéticas
Temperatura Curie
Clique aqui e veja o que é a temperatura Curie e entenda por que, em determinadas condições, alguns materiais perdem suas propriedades magnéticas.
As agulhas imantadas das bússolas orientam-se de acordo com o campo magnético terrestre
Processos de imantação
Clique aqui e descubra quais são os processos de imantação existentes, isto é, os processos que tornam um material um ímã.
O experimento de Oersted inaugurou a era de estudos referentes ao eletromagnetismo
Experimento de Oersted
Clique aqui para conhecer o experimento de Oersted, a comprovação de que campos magnéticos podem ser gerados por meio de corrente elétrica.
Na histerese magnética, um material imantado mantém sua imantação mesmo sem a presença de campos magnéticos externos
Histerese magnética
Clique aqui para conhecer a histerese magnética e entenda como ocorre a desmagnetização de um material imantado por meio de um campo variável.
Os ímãs convencionais são materiais ferromagnéticos
Antiferromagnetismo
Entenda o que é o antiferromagnetismo e quais são as suas características e propriedades!
Concepção artística de um processador quântico.
Computador quântico
Você já ouviu falar sobre computação quântica? Ao que tudo indica, no futuro, teremos computadores baseados nas propriedades quânticas da matéria, como nos spins dos elétrons, nos níveis de energia dos átomos e, até mesmo, no plano de polarização dos fótons de luz. Saiba mais sobre as características dessa incrível tecnologia emergente.