Adição e subtração de números complexos
Como em qualquer conjunto numérico, no conjunto dos números complexos existe uma maneira específica de aplicar as operações (adição, subtração, multiplicação e divisão). Antes de aplicarmos as operações devemos saber que um número complexo qualquer é indicado na maioria das vezes pela letra z e a sua forma geométrica é z = a + bi, onde a é a parte real e b a parte imaginária.
Adição e subtração
Dado dois números z1 = 2 – i e z2 = -3 + 7i. Somando os dois teremos:
z1 + z2 = (2 – i) + (-3 + 7i)
z1 + z2 = 2- i – 3 + 7i
z1 + z2 = 2 – 3 – i + 7i
z1 + z2 = - 1 + 6i
Dado dois números z1 = 2 – i e z2 = -3 + 7i. Somando os dois teremos:
z1 - z2 = (2 – i) - (-3 + 7i)
z1 - z2 = 2- i + 3 - 7i
z1 - z2 = 2 + 3 – i - 7i
z1 - z2 = 5 - 8i
Podemos concluir que para subtrair ou adicionar números complexos devemos operar parte real com parte real e parte imaginária com parte imaginária.
De uma maneira geral podemos representar a adição e a subtração com números complexos da seguinte forma.
Dados dos números complexos qualquer z1 = a + bi e z2 = c + di, veja a adição e subtração entre eles.
z1 + z2 = (a + bi) + (c + di)
z1 + z2 = a + bi + c + di
z1 + z2 = a + c + bi + di
Portanto, a adição de dois números complexos quaisquer pode ser calculada da seguinte forma:
z1 + z2 = (a + c) + (b + d)i
z1 - z2 = (a + bi) - (c + di)
z1 - z2 = a + bi - c - di
z1 - z2 = a - c + bi - di
Portanto, a subtração de dois números complexos quaisquer pode ser calculada da seguinte forma:
z1 - z2 = (a - c) + (b - d)i
Adição e subtração
Dado dois números z1 = 2 – i e z2 = -3 + 7i. Somando os dois teremos:
z1 + z2 = (2 – i) + (-3 + 7i)
z1 + z2 = 2- i – 3 + 7i
z1 + z2 = 2 – 3 – i + 7i
z1 + z2 = - 1 + 6i
Dado dois números z1 = 2 – i e z2 = -3 + 7i. Somando os dois teremos:
z1 - z2 = (2 – i) - (-3 + 7i)
z1 - z2 = 2- i + 3 - 7i
z1 - z2 = 2 + 3 – i - 7i
z1 - z2 = 5 - 8i
Podemos concluir que para subtrair ou adicionar números complexos devemos operar parte real com parte real e parte imaginária com parte imaginária.
De uma maneira geral podemos representar a adição e a subtração com números complexos da seguinte forma.
Dados dos números complexos qualquer z1 = a + bi e z2 = c + di, veja a adição e subtração entre eles.
z1 + z2 = (a + bi) + (c + di)
z1 + z2 = a + bi + c + di
z1 + z2 = a + c + bi + di
Portanto, a adição de dois números complexos quaisquer pode ser calculada da seguinte forma:
z1 + z2 = (a + c) + (b + d)i
z1 - z2 = (a + bi) - (c + di)
z1 - z2 = a + bi - c - di
z1 - z2 = a - c + bi - di
Portanto, a subtração de dois números complexos quaisquer pode ser calculada da seguinte forma:
z1 - z2 = (a - c) + (b - d)i
Publicado por Danielle de Miranda
Ferramentas Brasil Escola
Cronograma de estudos
Jornada do Enem

Corrige Aqui

Tire Dúvidas
Calculadora SISU
Calculadora PROUNI
Jogo das Capitais
Palpites
Simulados Enem
Simulados Vestibulares
Cronograma de estudos
Jornada do Enem

Corrige Aqui

Tire Dúvidas
Assista às nossas videoaulas

Artigos Relacionados
Divisão de Números Complexos
Quociente entre números complexos.

Atualidades
Encceja 2024: datas, como fazer inscrição e provas
Últimas notícias
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos

Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!

Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?

Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.