Adição e subtração de números complexos
Como em qualquer conjunto numérico, no conjunto dos números complexos existe uma maneira específica de aplicar as operações (adição, subtração, multiplicação e divisão). Antes de aplicarmos as operações devemos saber que um número complexo qualquer é indicado na maioria das vezes pela letra z e a sua forma geométrica é z = a + bi, onde a é a parte real e b a parte imaginária.
Adição e subtração
Dado dois números z1 = 2 – i e z2 = -3 + 7i. Somando os dois teremos:
z1 + z2 = (2 – i) + (-3 + 7i)
z1 + z2 = 2- i – 3 + 7i
z1 + z2 = 2 – 3 – i + 7i
z1 + z2 = - 1 + 6i
Dado dois números z1 = 2 – i e z2 = -3 + 7i. Somando os dois teremos:
z1 - z2 = (2 – i) - (-3 + 7i)
z1 - z2 = 2- i + 3 - 7i
z1 - z2 = 2 + 3 – i - 7i
z1 - z2 = 5 - 8i
Podemos concluir que para subtrair ou adicionar números complexos devemos operar parte real com parte real e parte imaginária com parte imaginária.
De uma maneira geral podemos representar a adição e a subtração com números complexos da seguinte forma.
Dados dos números complexos qualquer z1 = a + bi e z2 = c + di, veja a adição e subtração entre eles.
z1 + z2 = (a + bi) + (c + di)
z1 + z2 = a + bi + c + di
z1 + z2 = a + c + bi + di
Portanto, a adição de dois números complexos quaisquer pode ser calculada da seguinte forma:
z1 + z2 = (a + c) + (b + d)i
z1 - z2 = (a + bi) - (c + di)
z1 - z2 = a + bi - c - di
z1 - z2 = a - c + bi - di
Portanto, a subtração de dois números complexos quaisquer pode ser calculada da seguinte forma:
z1 - z2 = (a - c) + (b - d)i
Adição e subtração
Dado dois números z1 = 2 – i e z2 = -3 + 7i. Somando os dois teremos:
z1 + z2 = (2 – i) + (-3 + 7i)
z1 + z2 = 2- i – 3 + 7i
z1 + z2 = 2 – 3 – i + 7i
z1 + z2 = - 1 + 6i
Dado dois números z1 = 2 – i e z2 = -3 + 7i. Somando os dois teremos:
z1 - z2 = (2 – i) - (-3 + 7i)
z1 - z2 = 2- i + 3 - 7i
z1 - z2 = 2 + 3 – i - 7i
z1 - z2 = 5 - 8i
Podemos concluir que para subtrair ou adicionar números complexos devemos operar parte real com parte real e parte imaginária com parte imaginária.
De uma maneira geral podemos representar a adição e a subtração com números complexos da seguinte forma.
Dados dos números complexos qualquer z1 = a + bi e z2 = c + di, veja a adição e subtração entre eles.
z1 + z2 = (a + bi) + (c + di)
z1 + z2 = a + bi + c + di
z1 + z2 = a + c + bi + di
Portanto, a adição de dois números complexos quaisquer pode ser calculada da seguinte forma:
z1 + z2 = (a + c) + (b + d)i
z1 - z2 = (a + bi) - (c + di)
z1 - z2 = a + bi - c - di
z1 - z2 = a - c + bi - di
Portanto, a subtração de dois números complexos quaisquer pode ser calculada da seguinte forma:
z1 - z2 = (a - c) + (b - d)i
Publicado por Danielle de Miranda
Assista às nossas videoaulas
Artigos Relacionados
Divisão de Números Complexos
Quociente entre números complexos.

Números complexos
Clique e descubra o que são números complexos e entenda por que esse conjunto foi criado.
O módulo do número complexo
Definição do módulo de um número complexo. Aplicando o módulo de um número complexo para determinar subconjuntos do conjunto complexo.

O oposto do número complexo
Determinando o número oposto de um número complexo. Como diferenciar as definições do número oposto e do número conjugado de um número complexo.

Representação geométrica da adição de números complexos
Acesse este texto e aprenda a determinar o resultado da adição de números complexos por meio de sua representação geométrica no plano de Argand-Gauss. Relembre ainda como se realiza a soma de números complexos de maneira algébrica e como esses números podem ser representados no plano, por meio de vetores.

Segunda fórmula de Moivre
Clique e aprenda a segunda fórmula de Moivre, que é usada para encontrar raízes de números complexos escritos na forma polar ou trigonométrica.

Geografia
Relevo do Brasil
Assista à nossa aula sobre relevo do Brasil e compreenda como o relevo brasileiro é compartimentado. Entenda o processo de formação das estruturas do relevo do país, e conheça suas características.
Últimas notícias
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos

Filosofia
Sigmund Freud
Nessa videoaula você conhecerá mais sobre a vida e estudos do "pai" da psicanálise.

Literatura
Realismo fantástico
Trazemos uma análise sobre realismo fantástico. Assista já!

Química
Funções orgânicas
Tire um tempo para entender melhor o que são as amidas.