Aplicação de Juros Compostos

Os juros compostos são somados ao capital para o cálculo de novos juros nos tempos posteriores, o chamado juros sobre juros.
Observe o exemplo a seguir:
Pedro aplicou R$ 300,00 num banco que paga juros compostos de 3% ao mês. Qual será seu montante após o período de 6 meses?

O montante após 6 meses de aplicação será de R$ 358,21.
Exemplo 2
Qual o montante produzido por um capital de R$ 2.000,00, aplicado a juros compostos de 2% ao mês, durante um ano?
Fórmula para o cálculo de juros compostos M = C*(1 + i)t , onde:
M = montante
C = capital
i = taxa
t = tempo
Dados
M = ?
C = 2000
i = 2% = 2/100 = 0,02
t = 1 ano = 12 meses (pois a taxa é ao mês)
M = C* (1 + i)t
M = 2000* (1+0,02)12
M = 2000 * 1,0212
M = 2000*1,268242
M = 2.536,48
O montante produzido ao final de um ano será de R$ 2.536,48.
Exemplo 3
Qual deve ser o capital que, no sistema de juros compostos, à taxa de 4% ao mês, gera um montante de R$ 12.154,90 ao final de 1 ano e 6 meses?
M = 12.154,90
C = ?
i = 4% = 4/100 = 0,04
t = 1 ano e 6 meses = 18 meses
M = C* (1 + i)t
12.154,90 = C * (1 + 0,04)18
12.154,90 = C * 1,0418
12.154,90 = C * 2,0258
C = 12.154,90 / 2,0258
C = 6.000
O capital será de R$ 6.000,00.
Exemplo 4
Calcule o montante de um capital de R$ 12.000,00 aplicado durante 3 anos em um banco que paga no regime de juros compostos uma taxa de 1,5% a.m.
M = ?
C = 12.000
i = 1,5% = 1,5/100 = 0,015
t = 3 anos = 36 meses (pois a taxa de juros é mensal)
M = C* (1 + i)t
M = 12000 * (1 + 0,015)36
M = 12000 * 1,01536
M = 12000 * 1,70914
M = 20.509,68
O montante será de R$ 20.509,68.
Exemplo 5
O capital de R$ 1.500,00, aplicado a juros compostos, rendeu, após 2 meses, juros de R$ 153,75. Qual foi a taxa de juros?
M = 1500 + 153,75 = 1653,75
M = C * (1 + i)t
1653,75 = 1500 * (1 + i) 2
1653,75 / 1500 = (1 + i) 2
(1 + i) 2 = 1,1025
√(1 + i) 2 = √1,1025 (use a calculadora para extrair a raiz quadrada de 1,1025)
1 + i = 1,05
i = 1,05 – 1
i = 0,05 ou 5%
A taxa de juros empregada foi de 5%.
Observe o exemplo a seguir:
Pedro aplicou R$ 300,00 num banco que paga juros compostos de 3% ao mês. Qual será seu montante após o período de 6 meses?

O montante após 6 meses de aplicação será de R$ 358,21.
Exemplo 2
Qual o montante produzido por um capital de R$ 2.000,00, aplicado a juros compostos de 2% ao mês, durante um ano?
Fórmula para o cálculo de juros compostos M = C*(1 + i)t , onde:
M = montante
C = capital
i = taxa
t = tempo
Dados
M = ?
C = 2000
i = 2% = 2/100 = 0,02
t = 1 ano = 12 meses (pois a taxa é ao mês)
M = C* (1 + i)t
M = 2000* (1+0,02)12
M = 2000 * 1,0212
M = 2000*1,268242
M = 2.536,48
O montante produzido ao final de um ano será de R$ 2.536,48.
Exemplo 3
Qual deve ser o capital que, no sistema de juros compostos, à taxa de 4% ao mês, gera um montante de R$ 12.154,90 ao final de 1 ano e 6 meses?
M = 12.154,90
C = ?
i = 4% = 4/100 = 0,04
t = 1 ano e 6 meses = 18 meses
M = C* (1 + i)t
12.154,90 = C * (1 + 0,04)18
12.154,90 = C * 1,0418
12.154,90 = C * 2,0258
C = 12.154,90 / 2,0258
C = 6.000
O capital será de R$ 6.000,00.
Exemplo 4
Calcule o montante de um capital de R$ 12.000,00 aplicado durante 3 anos em um banco que paga no regime de juros compostos uma taxa de 1,5% a.m.
M = ?
C = 12.000
i = 1,5% = 1,5/100 = 0,015
t = 3 anos = 36 meses (pois a taxa de juros é mensal)
M = C* (1 + i)t
M = 12000 * (1 + 0,015)36
M = 12000 * 1,01536
M = 12000 * 1,70914
M = 20.509,68
O montante será de R$ 20.509,68.
Exemplo 5
O capital de R$ 1.500,00, aplicado a juros compostos, rendeu, após 2 meses, juros de R$ 153,75. Qual foi a taxa de juros?
M = 1500 + 153,75 = 1653,75
M = C * (1 + i)t
1653,75 = 1500 * (1 + i) 2
1653,75 / 1500 = (1 + i) 2
(1 + i) 2 = 1,1025
√(1 + i) 2 = √1,1025 (use a calculadora para extrair a raiz quadrada de 1,1025)
1 + i = 1,05
i = 1,05 – 1
i = 0,05 ou 5%
A taxa de juros empregada foi de 5%.
Publicado por Marcos Noé Pedro da Silva
Assista às nossas videoaulas
Artigos Relacionados
Movimentações Financeiras
Clique aqui e entenda um pouco mais sobre o que é uma movimentação financeira!

Sistema Americano de Empréstimo
Utilizando o sistema americano na quitação de empréstimos.

Matemática
Números complexos: forma trigonométrica
Nesta videoaula veremos o significado de um número complexo na forma trigonométrica, que também pode ser chamada de forma polar.
Últimas notícias
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos

Filosofia
Sigmund Freud
Nessa videoaula você conhecerá mais sobre a vida e estudos do "pai" da psicanálise.

Literatura
Realismo fantástico
Trazemos uma análise sobre realismo fantástico. Assista já!

Química
Funções orgânicas
Tire um tempo para entender melhor o que são as amidas.