Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Matemática financeira

Matemática financeira

A matemática financeira é a área da matemática que, como o nome sugere, diz respeito ao trabalho com as financias. Trabalhar com dinheiro nem sempre é uma tarefa fácil, pois exige-se domínio de porcentagem, de conceitos importantes, de análise de gráficos. Por meio da porcentagem, do aumento, do desconto, do juros ou dos rendimentos, a matemática financeira traz ferramentas para lidar com situações-problemas que envolvem dinheiro.

Para a realização dos cálculos na matemática, existem fórmulas específicas para o juros composto e para o juros simples. Os conceitos básicos da matemática financeira são: capital, acréscimos, descontos, lucros, juros, taxa de juros e montante.

Leia também: Propriedade fundamental das proporções: quando usar?

Para que serve a matemática financeira?

Não sabemos ao certo quando surgiu a matemática financeira, porém seu desenvolvimento acompanha o desenvolvimento das civilizações. Desde as primeiras relações comerciais até a sociedade atual, o domínio da matemática financeira tem sido de fundamental importância para estabelecermos nossas relações financeiras, sendo uma ferramenta para a tomada de decisão nesse sentido.

Muitas vezes precisamos escolher entre o serviço A ou o serviço B, levando sempre em consideração a relação custo-benefício. Diante dessa realidade, a matemática financeira é uma grande viabilizadora de decisões mais coerentes com a realidade e o orçamento disponível. Nas relações comerciais e financeiras são muito comuns as expressões: lucro, desconto, prejuízo, rendimento, juros, entre outras.

A matemática financeira está presente desde uma simples compra na farmácia até em investimentos nas bolsas. O objetivo de educar-se financeiramente vai de encontro com o desejo de melhor qualidade de vida. Quando uma conta de água vem cara, tomamos a decisão de verificar se tem algum vazamento na casa ou de rever os gastos e economizar; quando queremos contratar um plano de internet, analisamos o preço e os benefícios oferecidos por diferentes serviços antes de realizarmos a compra. Desse modo, a matemática financeira está em grande parte de nossas vidas.

Não pare agora... Tem mais depois da publicidade ;)

Conceitos básicos da matemática financeira

Para entender-se bem a matemática financeira, é necessário o domínio dos seus principais conceitos, sendo eles: capital, acréscimo, desconto, lucro, montante, juros e taxa de juros.

  • Acréscimo

É o valor acrescentado de uma transação comercial em relação à taxa percentual do capital. O acréscimo ocorre devido às demandas do mercado de subir o preço de certos produtos e serviços, por uma série de fatores, e, muitas vezes, com o interesse de aumento do lucro ou de imposto, o acréscimo é utilizado também em investimentos de capital.

  • Exemplo

Uma companhia de distribuição de água encanada cobra pela reativação do abastecimento R$ 150. Para o mês seguinte, a empresa anunciou um aumento de 10% na taxa de reativação. Qual será o valor dessa taxa após o acréscimo anunciado?

Calculando 10% de R$ 150.

A → acréscimo

A= 0,1 · 150 = 15

Assim, o acréscimo é de R$ 15.

  • Desconto

É o valor retirado de uma transação comercial em relação à taxa percentual do capital. Geralmente o desconto é utilizado como meio de potencializar as vendas ou premiar clientes que pagam a conta em dia. Além disso, ele é utilizado na contribuição de impostos, como o INSS e o FGTS.

  • Exemplo

Um carro popular é vendido, a preço de custo, por R$ 26.000. No dia dos pais, houve queda dos preços para R$ 24.950. Paulo, que resolveu presentear seu pai, terá qual valor de desconto sobre o preço carro?

Resolução

D = 26.000,00 – 24.950,00 = 1050,00

Veja também: Multiplicação de números decimais: como resolver?

  • Lucro

É o valor ganho em uma transação comercial, considerado como o rendimento positivo obtido por meio de uma negociação. É de utilidade para calcular-se o rendimento positivo em relação a uma venda, e também para calcular-se os ganhos diários ou mensais de uma empresa ou um de pequeno negócio.

  • Exemplo

Paulo comprou um aparelho telefônico por R$ 900. Ao chegar em casa, seu irmão mais novo interessou-se pelo aparelho, então ele decidiu vendê-lo para o irmão por R$ 1.150. Qual foi o lucro que Paulo obteve com a venda?

O lucro é definido pela diferença entre o valor de venda e o valor de compra:

1150,00 – 900,00 = 250,00

  • Taxa percentual

É a unidade utilizada para representar partes de um todo. Serve para o cálculo do rendimento em porcentagem de ganhos e perdas de negociações. Para encontrarmos a taxa percentual, basta dividirmos o valor novo pelo valor de referência.

  • Exemplo

Um carro popular é vendido, a preço de custo, por R$ 26.050. No dia dos pais, houve queda dos preços para R$ 25.000. Para Paulo, que resolveu presentear seu pai, qual será o valor da taxa percentual de economia?

Seja i → taxa de juros

Assim, a taxa percentual é de 4,2%

  • Juros

São os rendimentos de aplicações de capitais num certo período ou o valor a ser pago pela utilização de recursos de terceiros. Os juros são classificados em simples e compostos.

  • Montante

É a soma do capital com o juros ou o dinheiro adquirido após uma transação.

Para calcular-se o montante e o juros, existem fórmulas específicas.

Principais fórmulas da matemática financeira

  • Juros simples

Para calcular os juros simples, utilizamos uma fórmula que relaciona capital, juros, taxa de juros e tempo:

J= C·i·t

J → juros

C → capital

i → taxa de juros

t → tempo

Há também uma fórmula que relaciona montante, juros e capital.

M = C + J

M → montante

C → capital

J → juros

  • Exemplo

Qual será o montante gerado por um capital de R$ 8500 aplicado em um fundo de investimento a juros simples com a taxa de 2% ao ano, após 5 anos?

i → 2% = 0,02
t = 5
C = 8500

Usando a fórmula do juros simples, vamos calcular o juros.

J = C · i · t

J = 8500 · 0,02 · 5

J = 8500 · 0,1

J = 850

Sabendo-se que o montante é a soma do capital com o juros:

M = C + J

M = 8500 + 850 = 9350

Então o montante será de 9350.

Veja mais: Regra de três simples – processo utilizado em problemas que relacionam duas ou mais grandezas

  • Juros compostos

Já para os juros compostos utilizamos a fórmula:

M = C · (1 + i)t

M → montante

C → capital

i → taxa de juros

t → tempo

  • Exemplo

Um capital de R$ 2500 foi aplicado, a juros composto, em um investimento de grande risco, durante 2 anos, a uma taxa de 30% ao ano. Qual será o montante gerado ao término desse tempo?

Resolução

i → 30% = 0,3

t → 2

C → 2500

Usando a fórmula de juros compostos:

M = C · (1 + i )t

M = 2500 · (1 + 0,3)²

M = 2500 · 1,3²

M = 2500 · 1,69

M = 4225,00

Matemática financeira é a área que lida com situações-problemas envolvendo dinheiro.
Matemática financeira é a área que lida com situações-problemas envolvendo dinheiro.

Exercícios resolvidos

Questão 1 - (Vunesp) Um advogado, contratado por Marcos, consegue receber 80% de uma causa avaliada em R$ 200.000 e cobra 15% da quantia recebida, a título de honorários. A quantia, em reais, que Marcos receberá, descontada a parte do advogado, será de:

a) 24.000

b) 30.000

c) 136.000

d) 160.000

e) 184.000

Resolução

Alternativa C.
1º passo: encontrar o valor recebido na causa:

80% de 200.000,00 = 0,8 · 200.000,00 = 160.000,00

Sabendo-se que o advogado receberá 15% da causa:

15% de 160.000 = 0,15 · 160.000 = 24.000

O valor que restará para Marcos será o da diferença entre o valor da causa e o valor pago ao advogado:

160.000 – 24.000 = 136.000.

Questão 2 - Um capital de R$ 1200 foi aplicado, a juros simples, com taxa de juros de 2,5% a.m. durante 105 dias. O juros gerado será de:

a) R$ 430,20

b) R$ 100

c) R$ 120

d) R$ 441

e) R$ 105

Resolução

Alternativa E.

Usaremos a fórmula do juros simples, no entanto, como a taxa percentual está em meses e o tempo está em dias, precisamos converter o tempo para meses. O mês financeiro possui 30 dias, logo, 105 dias equivalem a 3,5 meses.

I → 2,5% = 0,025

t → 3,5 meses

C → 1200

J = 1200 · 0,025 · 3,5

J = 30 · 3,5

J = 105,00

Publicado por: Raul Rodrigues de Oliveira
Assista às nossas videoaulas

Artigos de "Matemática financeira"