Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Geometria
  4. Círculo e circunferência

Círculo e circunferência

Círculo e circunferência são figuras geométricas planas que se diferenciam apenas pelo fato de o círculo ser limitado pela circunferência.

Círculo e circunferência são duas figuras geométricas muito parecidas, o que pode ocasionar dúvidas sobre as suas definições. Vamos à diferenciação:
 

  • Definição de circunferência

Uma circunferência é um conjunto de pontos pertencentes ao plano que, dado um ponto fixo C, possuem a mesma distância até o ponto C. Em outras palavras, dada a distância “r” e o ponto fixo C, qualquer ponto A que possui a distância de A até C igual a r é um ponto pertencente à circunferência. Matematicamente, podemos representar essa última relação da seguinte maneira:

dAC = r

Tendo em vista a distância entre dois pontos obtida na Geometria Analítica e considerando as coordenadas de A (x,y) e de C (a,b), a relação acima pode ser reescrita da seguinte maneira:

dAC = r

√[(a – x)2 + (b – y)2] = r

(a – x)2 + (b – y)2 = r2

Na Geometria Analítica, essa equação é chamada de equação da circunferência com centro C (a,b) e raio r.

O ponto C é conhecido como centro da circunferência e a distância r é chamada de raio. A figura geométrica formada por um conjunto de pontos desse tipo é a seguinte:

Circunferência de centro C e raio r
Circunferência de centro C e raio r

O ponto C não pertence à circunferência, pois a circunferência é apenas o círculo verde. O ponto A, por sua vez, pertence à circunferência.
 

  • Definição de círculo

O círculo, por sua vez, é uma figura geométrica plana que é definida da seguinte maneira:

Círculo é o conjunto de pontos resultantes da união entre uma circunferência e seus pontos internos. Em outras palavras, o círculo é a área cuja fronteira é uma circunferência.

Círculo: área colorida
Círculo: área colorida

Tomando novamente os conhecimentos vindos da Geometria Analítica, a equação do círculo é praticamente igual à equação da circunferência. A diferença encontra-se no fato de o círculo ser um conjunto de pontos menor ou igual ao raio. A partir disso, temos a seguinte equação:

dAC ≤ r

√[(a – x)2 + (b – y)2] ≤ r

(a – x)2 + (b – y)2 ≤ r2

Dessa maneira, a diferença fundamental entre círculo e circunferência é que o círculo é toda a área interna de uma circunferência. Já essa última é apenas o contorno de um círculo.

Não pare agora... Tem mais depois da publicidade ;)

Propriedades básicas do círculo e da circunferência

O ponto C, centro da circunferência, não pertence a ela, mas pertence ao círculo. Dessa maneira, dado um ponto A qualquer (lembrando que dAC é a distância entre A e C), as posições relativas entre A e uma circunferência são:

1 – A é ponto da circunferência, se dAC = r;
2 – A é ponto externo à circunferência, se dAC > r;
3 – A é ponto interno à circunferência, se dAC < r;

As posições relativas entre A e o círculo são:

1 – A é ponto do círculo, se dAC ≤ r
2 – A é ponto externo ao círculo, se dAC > r

Qualquer segmento que liga dois pontos pertencentes a uma circunferência é chamado de corda. Quando uma corda contém o centro da circunferência, ela também é chamada de diâmetro. Desse modo, o diâmetro tem o comprimento igual ao comprimento de dois raios e, além disso, é a maior corda encontrada em qualquer circunferência.

Circunferência contendo um exemplo de corda e um exemplo de diâmetro
Circunferência contendo um exemplo de corda e um exemplo de diâmetro 

Dividindo o comprimento de uma circunferência pelo comprimento de seu raio, o número encontrado sempre será, aproximadamente, 6,28. Dessa maneira, pode-se escrever a seguinte relação:

C = 6,28
r          

Dividindo ambos os membros por 2, obtemos o seguinte resultado:

C = 3,14
2r          

Esse resultado é o mesmo da divisão anterior, mas realizado com o diâmetro da circunferência no lugar do raio. Dessa maneira, é possível encontrar o comprimento de uma circunferência tendo em mãos apenas o comprimento de seu raio (ou diâmetro). Assim, é possível definir a fórmula para o comprimento da circunferência:

C = 2πr, em que π é aproximadamente 3,14

O mesmo se aplica ao cálculo do comprimento ou perímetro de um círculo. Contudo, não é possível calcular a área de uma circunferência. A área que é calculada, na realidade, é a área do círculo, e a fórmula utilizada para isso é a seguinte:

A = π.r2

Exemplos de círculos coloridos
Exemplos de círculos coloridos
Publicado por: Luiz Paulo Moreira Silva
Artigo relacionado
Teste agora seus conhecimentos com os exercícios deste texto
Assista às nossas videoaulas
Lista de Exercícios

Questão 1

Toda as equações a seguir pertencem a circunferências distintas. Qual das equações apresentadas está relacionada a uma circunferência de centro (3, 9) e raio 3 cm?

a) (x – 3)2 + (y + 9)2 = 3

b) (x – 3)2 + (y – 3)2 = 9

c) (x – 3)2 + (y – 9)2 = 3

d) (x – 3)2 + (y – 9)2 = 9

e) (x + 9)2 + (y + 3)2 = 9

Questão 2

Uma coroa circular é a região limitada por dois círculos concêntricos com raios de medidas distintas. Qual é a área de uma coroa circular cujos raios medem 10 cm e 20 cm?

a) 942 cm2

b) 1000 cm2

c) 1042 cm2

d) 1142 cm2

e) 2000 cm2

Mais Questões
Assuntos relacionados
Tubos cilíndricos usados na construção civil
Cilindros
Clique e aprenda o que são cilindros, quais os seus elementos e sua classificação e veja as fórmulas para calcular a área e o volume desses sólidos.
Distância entre dois pontos em um mapa
Distância entre dois pontos no espaço
Clique para aprender a calcular a distância entre dois pontos no espaço e o modo como ela é obtida pelo Teorema de Pitágoras!
Figura formada por paralelogramos em perspectiva
Paralelogramos
Clique e descubra o que são paralelogramos e como eles são classificados em quadrados, losangos e retângulos.
Esquema que ilustra a superfície de uma esfera
Área da esfera
Aprenda a calcular a área de superfícies esféricas e de fusos esféricos por meio de fórmulas ou regras de três.
Imagem bidimensional na tela do computador e maquete tridimensional sobre o teclado
Dimensões do espaço
Clique e aprenda o que são as dimensões do espaço e como os objetos, figuras e sólidos geométricos comportam-se diante delas.
Ferramentas usadas para medir e construir ângulos no círculo trigonométrico
Círculo trigonométrico
Clique para aprender o que é um círculo trigonométrico, como construí-lo e o modo como o seno e o cosseno são marcados sobre ele.
A esfera possui alguns elementos característicos
Elementos de uma esfera
Clique e veja quais são os elementos da esfera, como essas figuras geométricas são definidas e alguns cálculos que os envolvem.
Polígonos inscritos e circunscritos na circunferência
Elementos do polígono regular inscrito
Clique e aprenda o que são os elementos do polígono regular inscrito em uma circunferência e conheça algumas propriedades básicas deles.
Figura geométrica formada pela diferença entre as áreas de outras figuras
Área da diferença entre duas figuras
Clique para descobrir como calcular a área da diferença entre duas figuras, isto é, como decompor uma figura para facilitar os cálculos de sua área.
O compasso é um objeto usado para desenhar círculos e circunferências
Elementos do círculo e da circunferência
Clique para aprender os elementos do círculo e da circunferência e obtenha um exemplo de cada uma dessas partes.
Reta tangente, externa ou secante são as posições entre reta e circunferência
Posição relativa entre uma reta e uma circunferência
Clique para aprender a posição relativa entre uma reta e uma circunferência e conheça também algumas de suas propriedades.
A relação entre as cordas de uma circunferência é uma propriedade das relações métricas
Relações métricas na circunferência: relação entre cordas
Clique e aprenda sobre relações métricas na circunferência, propriedades que podem expressar a relação e a proporcionalidade entre cordas.
Polígono regular de seis lados inscrito em uma circunferência
Propriedades do polígono regular inscrito
Aprenda algumas propriedades do polígono regular inscrito na circunferência e saiba como relacionar medidas e proporções dessa figura.
As relações métricas possibilitam calcular lado e apótema do quadrado inscrito usando o raio da circunferência
Relações métricas no quadrado inscrito
Aprenda o que são relações métricas no quadrado inscrito e descubra como calcular o lado e o apótema dessa figura usando o raio da circunferência.
Exemplo de eneágono regular com destaque para um triângulo, que pode ser usado para calcular a área dessa figura
Área do polígono regular
Clique e aprenda a calcular a área de um polígono regular por meio de uma fórmula que utiliza as medidas de seu lado e seu apótema.
A relação entre segmentos secantes na circunferência e triângulos formados por eles é de proporcionalidade
Relação entre segmentos secantes na circunferência
Clique e aprenda qual é a relação existente entre dois segmentos secantes na circunferência e obtenha exemplos dos cálculos desse conteúdo.
As relações métricas podem ser usadas para calcular medidas do hexágono regular inscrito em uma circunferência
Relações métricas no hexágono regular inscrito
Clique e aprenda o que são relações métricas no hexágono regular inscrito e descubra como usá-las para calcular as medidas do lado e do apótema.
Secante, cossecante e cotangente são razões relacionadas ao ciclo trigonométrico
Secante, cossecante e cotangente
Clique para descobrir o que são as razões secante, cossecante e cotangente e quais são suas relações com seno, cosseno e tangente.
Por meio das relações fundamentais da Trigonometria, é possível relacionar as razões trigonométricas
Segunda relação fundamental da Trigonometria
Clique e descubra qual é a segunda relação fundamental da Trigonometria e entenda como esse teorema associa as razões trigonométricas básicas.
Seno e cosseno são duas das razões trigonométricas que podem aparecer em inequações
Inequações trigonométricas: cosx < k
Clique e aprenda a resolver inequações trigonométricas do tipo cosx < k e conheça os fundamentos para essa resolução.
Toda inequação trigonométrica pode ser reduzida a uma inequação e utilizar o ciclo trigonométrico na resolução
Inequações trigonométricas: tgx > k
Clique para aprender a solucionar uma das inequações trigonométricas, tgx > k, por meio do ciclo trigonométrico e da fórmula obtida a partir dele.
É possível solucionar inequações trigonométricas com o auxílio do ciclo trigonométrico
Inequações trigonométricas: senx > k
Clique e descubra como resolver, com o uso do ciclo trigonométrico, senx > k, uma das inequações trigonométricas.
A geometria analítica estuda a geometria por meio de processos algébricos
O que é geometria analítica?
Descubra o que é geometria analítica e entenda como os processos algébricos são utilizados nessa disciplina para estudar a geometria.
A quantidade de dimensões define e diferencia as figuras planas e espaciais
Diferenças entre figuras planas e espaciais
Clique para aprender as maiores diferenças entre figuras planas e espaciais, como a quantidade de dimensões que as define.
Cônicas: intersecções entre um plano e um cone
Cônicas
Aprenda o que são cônicas, figuras geométricas formadas pela intersecção de um plano com um cone de revolução. Descubra também quais são as figuras elipse, hipérbole e parábola. Conheça ainda as equações reduzidas de cada uma das cônicas nos casos em que os focos estejam sobre o eixo x ou no eixo y.
Algumas dicas de estudo podem ajudar a resolver as questões de geometria do Enem
Como estudar geometria para o Enem?
Você sabe como estudar geometria para as provas do Enem? Conheça uma estratégia que começa pelo básico, relembrando definições, propriedades e características das figuras geométricas, e crie um roteiro de estudos. Entenda também a importância de fazer exercícios e de programar as revisões desse conteúdo.
Unidade de medida usada para arcos de circunferências: radiano
Radiano
Clique e descubra o que é radiano, nome dado à medida do arco de uma circunferência de raio r quando esse arco também mede r. Medidas em radianos relacionam-se a ângulos centrais de uma circunferência, que, por sua vez, podem ser relacionados a um número real por meio de razões trigonométricas. Clique e confira!