Whatsapp icon Whatsapp

Determinando o Domínio de uma Função

Aprendendo a determinar o domínio de uma função
Aprendendo a determinar o domínio de uma função

As funções devem ser caracterizadas de acordo com algumas condições de existência:

Dois conjuntos: um denominado domínio e outro contradomínio.

Uma expressão y = f(x) associando os valores de x e y, formando pares ordenados pertencentes aos conjuntos domínio e contradomínio.


Através de alguns exemplos, demonstraremos como determinar o domínio de uma função, isto é, descobrir quais os números que a função não pode assumir para que a sua condição de existência não seja afetada.

a)
  
Nesse caso, o denominador não pode ser nulo, pois não existe divisão por zero na Matemática.
x – 1 ≠ 0
x ≠ 1
Portanto, D(f) = {x ? R / x ≠ 1} = R – {1}.

b)

Nos números reais, o radicando de uma raiz de índice não pode ser negativo.
4x – 6 ≥ 0
4x 6
x ≥ 6/4
x ≥ 3/2
Portanto, D(f) = {x ? R / x ≥ 3/2}

c)

O radicando de uma raiz de índice ímpar pode ser um número negativo, nulo ou positivo, isto é, 3x – 9 pode assumir qualquer valor real. Portanto, D(f) = R.


d)
 
Nesse caso, temos restrições tanto no numerador quanto no denominador. As restrições podem ser calculadas da seguinte maneira:
I) 2 – x ≥ 0 → – x ≥ – 2 → x ≤ 2
II) x + 1 > 0 → x > – 1

Executando a intersecção entre I e II, obtemos:

Não pare agora... Tem mais depois da publicidade ;)

Portanto, D(f) = {x ? R / –1 < x ≤ 2} → ] –1, 2].


É importante estar atento a determinadas situações envolvendo funções; o conhecimento e a habilidade em lidar com tais condições é consequência de muito estudo e dedicação por parte dos estudantes. Tais condições de existência das funções são cobradas em questões de vestibulares de diversas universidades brasileiras, em virtude de o conteúdo possuir inúmeras aplicações no cotidiano.

Publicado por Marcos Noé Pedro da Silva

Artigos Relacionados

Condição de Existência do Gráfico de uma Função do 2º Grau
Conhecendo a representação gráfica de uma função do 2º grau.
Domínio, contradomínio e imagem de uma função
Conheça a definição de função, de domínio, de contradomínio e de imagem de uma função. Saiba qual a relação entre todos esses elementos observando os exemplos.
Gráfico de uma função modular.
Função modular
Entenda o que é uma função modular e aprenda como elaborar um gráfico para representar esse tipo de função. Resolva exercícios sobre o conteúdo.
Função par e função ímpar
Definição de função, Diagrama de função, Gráfico de função, Função par, Função ímpar, Tipo de função, Conjunto, Elemento de um conjunto, Plano cartesiano, Gráfico cartesiano.
Ponto de Equilíbrio
Como determinar o ponto de equilíbrio de uma empresa? Clique aqui e descubra!
video icon
Geografia
Talibã e a retomada do poder no Afeganistão
Assista à videoaula e conheça o grupo radical fundamentalista Talibã. Entenda seu processo de formação e ascensão ao poder no Afeganistão durante a década de 1990, bem como o processo de queda do grupo e a retomada ao poder em 2021.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Sigmund Freud
Filosofia
Sigmund Freud
Nessa videoaula você conhecerá mais sobre a vida e estudos do "pai" da psicanálise.
video icon
Thumb Brasil Escola
Literatura
Realismo fantástico
Trazemos uma análise sobre realismo fantástico. Assista já!
video icon
Thumb Brasil Escola
Química
Funções orgânicas
Tire um tempo para entender melhor o que são as amidas