Whatsapp icon Whatsapp

Intersecção de retas concorrentes

Relembrado a definição de retas concorrentes: Duas retas são concorrentes se, somente se, possuírem um ponto em comum, ou seja, a intersecção das duas retas é o ponto em comum.

Considerando a reta t e u e as suas respectivas equações gerais das retas, atx + bty + ct = 0 e aux + buy + cu = 0. Representando-as em um plano cartesiano, iremos perceber que são concorrentes, pois possui o ponto A em comum.



O sistema formado com as equações gerais das retas terá como solução o par ordenado (x0, y0) que representa o ponto de intersecção.

Exemplo: As equações gerais das duas retas r e s são respectivamente, x + 4y – 7 = 0 e 3x + y + 1 = 0. Determine o ponto P(x0, y0) comum às retas r e s.

Sabemos que o ponto de intersecção de duas retas concorrentes é a solução do sistema formado por elas. Assim, veja a resolução do sistema abaixo:

x + 4y – 7 = 0
3x + y + 1 = 0

x + 4y = 7     (-3)
3x + y = -1

-3x  –  12y   = -21
 3x   +   y      = -1
           -11y   = -22
y = 2

Substituindo o valor de y em qualquer uma das equações iremos obter o valor de x:

x + 4y = 7
x + 4 . 2 = 7
x + 8 = 7
x = 7 – 8
x = -1

Portanto, o ponto P(x0, y0) = (-1,2).

No início da explicação foi dito que as retas t: atx + bty + ct = 0 e u: aux + buy + cu = 0 são concorrentes. Para que seja verdadeira essa afirmação o sistema formado por elas deverá ser possível e determinado, essa verificação irá funcionar da seguinte forma:

atx + bty + ct = 0
aux + buy + cu = 0

atx + bty = - ct
aux + buy = - cu 

E para que esse sistema seja possível e determinado, o seu determinante deverá ser diferente de zero.



Exemplo: Verifique se as retas 2x + y – 3 = 0 e 6x + 5y + 1 = 0 são concorrentes.

2x + y = 3
6x + 5y = -1



2 . 5 – (1 . 6) ≠ 0
10 – 6 ≠ 0
4 ≠ 0

Não pare agora... Tem mais depois da publicidade ;)
Publicado por Danielle de Miranda

Artigos Relacionados

Generalidades sobre as equações da reta
Generalidades sobre as equações da reta, Forma geral da reta, equação geral da reta, Forma reduzida da reta, equação reduzida da reta, Forma paramétrica da reta, equação paramétrica da reta.
Posição relativa entre duas circunferências
circunferências tangentes, secantes, externas, internas e concêntricas
video icon
Texto"Matemática do Zero | Sistema Métrico Decimal (Unidade de Comprimento)" em fundo azul.
Matemática do Zero
Matemática do Zero | Sistema Métrico Decimal (Unidade de Comprimento)
As unidades de medida são representações das grandezas físicas utilizadas em diversas áreas do conhecimento com o intuito de quantificar uma matéria, uma sensação, o tempo ou o tamanho de algo, por exemplo. Nessa aula veremos sobre o sistema métrico decimal, ou seja, como tansformar unidades de medida de comprimento (quilômetro, hectômetro, decâmetro, metro, decímetro, centímetro e milímetro).

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
videoaula brasil escola
Biologia
Transgênicos
Você sabe o que são alimentos transgênicos? Não se engane, eles estão mais presentes do que você imagina!
video icon
Videoaula Brasil Escola
Química
Alotropia
Não deixe de assistir nossa aula para fixar tudo o que você estudou sobre alotropia!
video icon
Videoaula Brasil Escola
Filosofia
Batman
Que tal assistir ao vídeo para uma análise ética sobre o herói?