Whatsapp icon Whatsapp

Intersecção de retas concorrentes

Relembrado a definição de retas concorrentes: Duas retas são concorrentes se, somente se, possuírem um ponto em comum, ou seja, a intersecção das duas retas é o ponto em comum.

Considerando a reta t e u e as suas respectivas equações gerais das retas, atx + bty + ct = 0 e aux + buy + cu = 0. Representando-as em um plano cartesiano, iremos perceber que são concorrentes, pois possui o ponto A em comum.



O sistema formado com as equações gerais das retas terá como solução o par ordenado (x0, y0) que representa o ponto de intersecção.

Exemplo: As equações gerais das duas retas r e s são respectivamente, x + 4y – 7 = 0 e 3x + y + 1 = 0. Determine o ponto P(x0, y0) comum às retas r e s.

Sabemos que o ponto de intersecção de duas retas concorrentes é a solução do sistema formado por elas. Assim, veja a resolução do sistema abaixo:

x + 4y – 7 = 0
3x + y + 1 = 0

x + 4y = 7     (-3)
3x + y = -1

-3x  –  12y   = -21
 3x   +   y      = -1
           -11y   = -22
y = 2

Substituindo o valor de y em qualquer uma das equações iremos obter o valor de x:

x + 4y = 7
x + 4 . 2 = 7
x + 8 = 7
x = 7 – 8
x = -1

Portanto, o ponto P(x0, y0) = (-1,2).

No início da explicação foi dito que as retas t: atx + bty + ct = 0 e u: aux + buy + cu = 0 são concorrentes. Para que seja verdadeira essa afirmação o sistema formado por elas deverá ser possível e determinado, essa verificação irá funcionar da seguinte forma:

atx + bty + ct = 0
aux + buy + cu = 0

atx + bty = - ct
aux + buy = - cu 

E para que esse sistema seja possível e determinado, o seu determinante deverá ser diferente de zero.



Exemplo: Verifique se as retas 2x + y – 3 = 0 e 6x + 5y + 1 = 0 são concorrentes.

2x + y = 3
6x + 5y = -1



2 . 5 – (1 . 6) ≠ 0
10 – 6 ≠ 0
4 ≠ 0

Não pare agora... Tem mais depois da publicidade ;)
Publicado por Danielle de Miranda

Artigos Relacionados

Generalidades sobre as equações da reta
Generalidades sobre as equações da reta, Forma geral da reta, equação geral da reta, Forma reduzida da reta, equação reduzida da reta, Forma paramétrica da reta, equação paramétrica da reta.
A superfície da mesa representa parte de um plano
O que é plano?
Clique e aprenda o que é um plano, os postulados que garantem sua existência e como construí-los.
Segmentos de reta paralelos nos trilhos de um trem
Paralelismo
Clique para aprender o que é paralelismo e as propriedades mais importantes relacionadas com essa posição relativa entre retas e planos.
Posição relativa entre duas circunferências
circunferências tangentes, secantes, externas, internas e concêntricas
Todas as posições relativas entre reta e plano presentes na mesma ilustração
Posições relativas entre reta e plano
Clique para aprender o que são retas contidas no plano, secantes ou paralelas a ele: as chamadas posições relativas entre reta e plano.
video icon
Biologia
Força de tração
Tração, ou tensão, é nome que se dá à força exercida sobre um corpo por meio de cordas, cabos ou fios, por exemplo. A força de tração é particularmente útil quando se deseja que uma força seja transferida para outros corpos distantes ou, ainda, para alterar-se a direção de aplicação de uma força.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
videoaula brasil escola
Química
Cinética química
Se ainda tem dúvidas quanto a velocidade das reações, essa videoaula é para você!
video icon
videoaula brasil escola
Português
Redação
Entenda como realizar argumento por causa e consequência com a nossa aula.
video icon
videoaula brasil escola
História
Crise de 1929
A quebra da bolsa de valores de Nova Iorque afetou não só os EUA, como o mundo. Entenda!