Whatsapp icon Whatsapp

Propriedade dos termos eqüidistantes dos extremos de uma PG finita

Os termos que possuem a mesma distância em uma seqüência numérica escrita na forma de uma PG possuem uma propriedade que diz o seguinte:

Se multiplicarmos os dois termos eqüidistantes esse produto será igual à multiplicação dos dois extremos da PG (a1 . an).

Dada a PG finita (5,10,20,40,80,160,320) os elementos 5 e 320 são os extremos e os elementos 10 e 160; 20 e 80 são eqüidistantes.

Se multiplicarmos os extremos, teremos: 5 x 320 = 1600
Multiplicando os termos eqüidistantes, teremos:
10 x 160 = 1600
20 x 80 = 1600

Portanto, podemos dizer que a Propriedade dos termos eqüidistantes dos extremos de uma PG finita é verdadeira, pois no exemplo acima o produto dos extremos é igual ao produto dos termos eqüidistantes.

Exemplo: dada uma PG finita composta por 8 elementos, sabendo que
a3 . a6 = 75497472 e que a1 = - 6. Determine o valor de a8.

Como a PG possui 8 elementos os termos a3 e a6 são eqüidistantes, portanto, o seu produto será igual ao produto dos extremos:

a3 . a6 = a1 . a8
75497472 = - 6 . a8
75497472 : (-6) = a8

Portanto, a8 = -12582912.
Publicado por Danielle de Miranda
Assista às nossas videoaulas

Artigos Relacionados

Soma dos infinitos termos de uma P.G
Sequências geométricas infinitas.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
videoaula brasil escola
Biologia
Transgênicos
Você sabe o que são alimentos transgênicos? Não se engane, eles estão mais presentes do que você imagina!
video icon
Videoaula Brasil Escola
Química
Alotropia
Não deixe de assistir nossa aula para fixar tudo o que você estudou sobre alotropia!
video icon
Videoaula Brasil Escola
Filosofia
Batman
Que tal assistir ao vídeo para uma análise ética sobre o herói?