Sistema com Três Variáveis
Um sistema de equações pode ser formado por várias incógnitas, mas somente será resolvido se o número de termos desconhecidos for igual ao número de equações do sistema. Os sistemas com três variáveis podem ser resolvidos através dos processos já conhecidos e estudados, substituição ou adição.
Observe passo a passo a resolução do seguinte sistema com três equações e três variáveis:
.jpg)
Para resolver um sistema desse tipo devemos escolher uma das equações e isolar uma das incógnitas.
x + 2y + z = 12
x = 12– 2y – z
Nas outras duas equações substituímos o valor da incógnita isolada.
x – 3y + 5z = 1
12 – 2y – z – 3y + 5z = 1
–2y –3y –z + 5z = 1 – 12
–5y + 4z = – 11
2x – y + 3z = 10
2 (12 – 2y – z) – y + 3z = 10
24 – 4y – 2z – y + 3z = 10
–4y –y – 2z + 3z = 10 – 24
–5y + z = – 14
Essas duas equações constituirão um sistema com duas variáveis e duas incógnitas, que poderá ser resolvido por qualquer método.
.jpg)
–5y + z = – 14
z = – 14 + 5y
–5y + 4z = –11
–5y + 4 (–14 + 5y) = –11
–5y – 56 + 20y = –11
–5y + 20y = –11 + 56
15y = 45
y = 45 / 15
y = 3
z = – 14 + 5y
z = –14 + 5 * 3
z = –14 + 15
z = 1
Encontrando o valor das duas incógnitas, basta substituir o valor delas na primeira equação. Assim determinaremos o valor das três incógnitas.
x = 12 – 2y – z
x = 12 – 2 * 3 – 1
x = 12 – 6 – 1
x = 5
O valor de x, y e z no sistema dado é 5, 3 e 1 respectivamente.
Observe passo a passo a resolução do seguinte sistema com três equações e três variáveis:
.jpg)
Para resolver um sistema desse tipo devemos escolher uma das equações e isolar uma das incógnitas.
x + 2y + z = 12
x = 12– 2y – z
Nas outras duas equações substituímos o valor da incógnita isolada.
x – 3y + 5z = 1
12 – 2y – z – 3y + 5z = 1
–2y –3y –z + 5z = 1 – 12
–5y + 4z = – 11
2x – y + 3z = 10
2 (12 – 2y – z) – y + 3z = 10
24 – 4y – 2z – y + 3z = 10
–4y –y – 2z + 3z = 10 – 24
–5y + z = – 14
Essas duas equações constituirão um sistema com duas variáveis e duas incógnitas, que poderá ser resolvido por qualquer método.
.jpg)
–5y + z = – 14
z = – 14 + 5y
–5y + 4z = –11
–5y + 4 (–14 + 5y) = –11
–5y – 56 + 20y = –11
–5y + 20y = –11 + 56
15y = 45
y = 45 / 15
y = 3
z = – 14 + 5y
z = –14 + 5 * 3
z = –14 + 15
z = 1
Encontrando o valor das duas incógnitas, basta substituir o valor delas na primeira equação. Assim determinaremos o valor das três incógnitas.
x = 12 – 2y – z
x = 12 – 2 * 3 – 1
x = 12 – 6 – 1
x = 5
O valor de x, y e z no sistema dado é 5, 3 e 1 respectivamente.
Publicado por Marcos Noé Pedro da Silva
Ferramentas Brasil Escola
Cronograma de estudos
Jornada do Enem

Corrige Aqui

Tire Dúvidas
Calculadora SISU
Calculadora PROUNI
Jogo das Capitais
Palpites
Simulados Enem
Simulados Vestibulares
Cronograma de estudos
Jornada do Enem

Corrige Aqui

Tire Dúvidas
Artigos Relacionados
Inequação-quociente
A inequação-quociente possui um método resolutivo bem semelhante ao da inequação-produto, no qual é necessário realizar um estudo dos sinais das funções e interseccionar estas soluções.

Sociologia
Friedrich Engels
Veja nesta videoaula uma breve biografia de Friedrich Engels, um dos maiores nomes do marxismo.
Últimas notícias
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos

Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!

Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?

Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.