Inequação – produto
Inequação é uma desigualdade de elementos, portanto uma inequação - produto pode ser representada da seguinte forma:
h(x) . w(x) > 0
h(x) . w(x) < 0
h(x) . w(x) ≠ 0
h(x) . w(x) ≥ 0
h(x) . w(x) ≤ 0
Sendo que h e w estão representando qualquer função (elemento). Por exemplo:
Qual seriam os possíveis valores de x para que o produto das funções h(x) = (3x + 6) e w(x) = (2x – 1) seja negativo?
É possível resolver de várias formas diferentes, dentre elas podemos destacar as seguintes:
• Para que esse produto seja negativo ele deverá ser menor que zero, portanto iremos representá-lo da seguinte forma: (3x + 6) . (2x – 1) < 0. Podemos estudar o sinal de cada uma das funções e em seguida estudar o sinal da inequação, assim serão encontrados os possíveis valores de x que satisfazem a desigualdade.
(3x + 6) . (2x – 1) < 0
h(x) = (3x + 6)
3x + 6 = 0
3x = -6
x = -2
w(x) = (2x – 1)
2x – 1 = 0
2x = 1
x = 1/2
Agora montamos a seguinte tabela que possibilitará encontrar os valores de x:
Portanto, teremos como solução da inequação: S = {x R / -2 < x < 1/2}
• Outra forma de encontrar o valor dessa mesma inequação – produto é transformá-la em uma inequação de 2º grau. Veja como isso acontece:
(3x + 6) . (2x – 1) < 0
6x2 – 3x + 12x – 6 < 0
6x2 + 9x – 6 < 0 → inequação do segundo grau.
Igualamos a expressão algébrica a zero e encontramos os possíveis valores de x:
6x2 + 9x – 6 = 0
Δ = 25
x’ = 1/2
x’’ = -2
Com esses valores estudamos o sinal da inequação, dessa forma encontramos a solução da inequação – produto.
S = {x R / -2 < x < 1/2}
h(x) . w(x) > 0
h(x) . w(x) < 0
h(x) . w(x) ≠ 0
h(x) . w(x) ≥ 0
h(x) . w(x) ≤ 0
Sendo que h e w estão representando qualquer função (elemento). Por exemplo:
Qual seriam os possíveis valores de x para que o produto das funções h(x) = (3x + 6) e w(x) = (2x – 1) seja negativo?
É possível resolver de várias formas diferentes, dentre elas podemos destacar as seguintes:
• Para que esse produto seja negativo ele deverá ser menor que zero, portanto iremos representá-lo da seguinte forma: (3x + 6) . (2x – 1) < 0. Podemos estudar o sinal de cada uma das funções e em seguida estudar o sinal da inequação, assim serão encontrados os possíveis valores de x que satisfazem a desigualdade.
(3x + 6) . (2x – 1) < 0
h(x) = (3x + 6)
3x + 6 = 0
3x = -6
x = -2
w(x) = (2x – 1)
2x – 1 = 0
2x = 1
x = 1/2
Agora montamos a seguinte tabela que possibilitará encontrar os valores de x:
Portanto, teremos como solução da inequação: S = {x R / -2 < x < 1/2}
• Outra forma de encontrar o valor dessa mesma inequação – produto é transformá-la em uma inequação de 2º grau. Veja como isso acontece:
(3x + 6) . (2x – 1) < 0
6x2 – 3x + 12x – 6 < 0
6x2 + 9x – 6 < 0 → inequação do segundo grau.
Igualamos a expressão algébrica a zero e encontramos os possíveis valores de x:
6x2 + 9x – 6 = 0
Δ = 25
x’ = 1/2
x’’ = -2
Com esses valores estudamos o sinal da inequação, dessa forma encontramos a solução da inequação – produto.
S = {x R / -2 < x < 1/2}
Publicado por Danielle de Miranda
Artigos Relacionados
Analisando Situações Através de Funções do 1º Grau
Aplicações de uma Função do 1º grau.
Relação
Relação, Conjunto, Relação entre conjuntos, Representação de conjunto, Representação de relação, Regra, Diagrama, Par ordenado, Domínio, Imagem, Gráfico de uma relação.
Sinal da Função do 2º Grau
Estudando o sinal de uma função do 2º grau.
Química
pH de soluções
Você já recebeu alguma receita de remédio milagroso pelo grupo da família dizendo que algum alimento de pH isso ou pH aquilo faria bem a sua saúde ou enfermidade? E você sabia interpretar se de fato aquele pH condizia com tal alimento ou substancia referida na receita? Então vem com a gente que nós vamos te explicar o que é pH, como é calculado, medido e a sua importância em nossas vidas.
Últimas notícias
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos
Biologia Evolutiva
Neodarwinismo
Essa teoria explica os processos evolutivos propostos na teoria da evolução de Darwin.
Febre
Se caracteriza por ser uma elevação da temperatura do corpo a níveis superiores que os normais, saiba mais.
Ciclo de Krebs
O ciclo de Krebs, é uma das etapas do processo de respiração celular.
Álgebra
A álgebra é a área da Matemática que estuda as operações com variáveis.
Proporção áurea
A proporção áurea é um conceito matemático que representa uma relação estética e harmônica que é considerada visualmente agradável.
Primeira fórmula de Moivre
A primeira fórmula de Moivre é usada para calcular potências de números complexos na forma polar ou trigonométrica.
População
Demografia
A demografia é uma ciência que realiza diversos estudos populacionais.
Geopolítica
Nova Ordem Mundial
Período geopolítico vivenciado pela sociedade planetária após o fim da Guerra Fria.
Tipos de indústria
Conheça alguns tipos de indústria de base.
Fontes de energia
Energia das Marés
Entenda como a força gravitacional do Sol e da Lua interferem nas marés.
Mecânica
Plano inclinado com atrito
Decompor as forças é uma das etapas para cálculos que envolvem o plano inclinado com atrito.
Ondulatória
Função de onda
Ao estudarmos as ondas vimos que elas têm origem em meios elásticos, como em cordas, na superfície da água, do ar, entenda.
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.