Whatsapp icon Whatsapp

Deslocamento angular

Os ponteiros do relógio descrevem um movimento angular
Os ponteiros do relógio descrevem um movimento angular

Vejamos a figura acima: nela há representada uma partícula que descreve um movimento circular. A parte da física que trata desse tipo de movimento é chamada cinemática angular. Vamos dizer que a partícula, em movimento circular de raio R e centro O, se deslocou de um ponto X para o ponto Y. Dessa forma, podemos dizer que o comprimento ΔS do arco AB nada mais é do que o espaço percorrido pela partícula. Assim, dizemos que o deslocamento angular da partícula é o ângulo central ∆θ oposto ao arco AB. De tal modo, temos:

∆θ=deslocamento agular

Na figura 2a, abaixo, temos que o deslocamento ocorreu no sentido horário, isto é, no mesmo sentido dos ponteiros do relógio.

Figura 2a - Deslocamento angular do ponto A até o ponto B

Na figura 2b, abaixo, o deslocamento do ponto P ao ponto Q ocorreu no sentido anti-horário, isto é, no sentido contrário ao do movimento dos ponteiros do relógio.

Não pare agora... Tem mais depois da publicidade ;)

Figura 2b - Deslocamento angular do ponto P até o ponto Q

Na maioria das aplicações, consideramos o deslocamento angular em módulo, porém, em certos casos, quando estivermos analisando dois ou mais pontos girando em sentidos diferentes, poderemos adotar um dos sentidos como positivo e o outro como negativo. A convenção mais comum é a da trigonometria, que diz:

sentido anti-horário → ∆θ >0

sentido horário → ∆θ <0

Assim como na trigonometria, também poderemos ter deslocamentos angulares maiores que uma volta. Na figura abaixo, por exemplo, representamos uma situação em que uma partícula se moveu sobre uma circunferência, partindo do ponto A em sentido anti-horário, e teve um deslocamento angular maior que uma volta, indo parar no ponto B.

Partícula se movendo em sentido anti-horário do ponto A para o ponto B.

Publicado por Domiciano Correa Marques da Silva

Artigos Relacionados

Massa específica
Clique aqui para entender sobre a massa específica. Confira sua unidade de medida, sua fórmula, como calculá-la, além de exercícios resolvidos.
Relação entre Trabalho e Energia Cinética
Veja qual é a relação entre o trabalho e a energia cinética.
video icon
Escrito"Função Seno com Geogebra" sobre fundo bege e amarelo.
Matemática
Função Seno com Geogebra
Nesta aula utilizaremos o software gratuito geogebra para mostrar as possíveis variações da função seno. Analisaremos o eixo central, a amplitude, o máximo e mínimo, a imagem e o período da função seno.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Pessoa com as pernas na água
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
video icon
fone de ouvido, bandeira do reino unido e caderno escrito "ingles"
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
video icon
três dedos levantados
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.