Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Conjunto dos números complexos
  4. Aplicação dos Números Complexos

Aplicação dos Números Complexos

A resolução de uma equação do 2º grau consiste em determinar os possíveis valores da incógnita em relação ao valor do discriminante. As condições para a determinação do conjunto solução são as seguintes:

∆ > 0, a equação possui duas raízes reais e distintas, x’ ≠ x’’.
∆ = 0, a equação possui raízes reais iguais, x’ = x’’.
∆ < 0, a equação não possui raízes reais.

Observe que as condições foram determinadas dentro do conjunto dos números reais, e nesse conjunto numérico quando ∆ < 0, a equação não possui raízes. Isso ocorre porque o valor do discriminante é aplicado na fórmula resolutiva de Bháskara dentro de uma raiz quadrada, veja:


Pelo conjunto dos números reais e pela regra operatória de raízes quadradas, não existe solução quando o radicando é um número negativo, isto é, não existe raiz quadrada de números negativos, pois não existe número elevado ao quadrado que resulta em negativo. Nesse caso, quando deparamos com uma equação do 2º grau, na qual o cálculo do discriminante resulta em número negativo, dizemos que não existe solução da equação pertencente aos números reais.

Essas equações, somente terão conjunto solução dentro do conjunto dos números complexos, pois nesse espaço utilizamos uma unidade imaginária, representada por i² = –1. Portanto, caso o discriminante seja negativo, utilizamos essa técnica dos números complexos. Observe:

Não pare agora... Tem mais depois da publicidade ;)

Vamos utilizar essa característica referente à unidade imaginária dos números complexos na determinação das raízes da seguinte equação do 2º grau: 4x² – 4x + 2 = 0.




Exemplo 2

Calcular a solução da equação x² – 14x + 50 = 0, considerando o conjunto dos números complexos.

Publicado por: Marcos Noé Pedro da Silva
Assuntos relacionados
Potência i
Potências de uma unidade imaginária.
Operações com números complexos na forma polar ou trigonométrica
Multiplicação, divisão e potenciação na forma trigonométrica
Forma Trigonométrica ou Polar de um Número Complexo
Escrevendo um número complexo na forma trigonométrica
Conjugado de um número complexo
Conjugado
Definição do conjugado e sua utilização nas operações de números complexos.
Simbolo usado para representar o conjunto dos números complexos
Números complexos
Clique e descubra o que são números complexos e entenda por que esse conjunto foi criado.
A segunda fórmula de Moivre é usada para encontrar raízes de números complexos
Segunda fórmula de Moivre
Clique e aprenda a segunda fórmula de Moivre, que é usada para encontrar raízes de números complexos escritos na forma polar ou trigonométrica.
Plano de Argand-Gauss (plano complexo)
Saiba o que é o plano de Argand-Gauss, aprenda a representar números complexos no plano, calcule o módulo e argumento de um número complexo.
Oposto de um número complexo
O oposto do número complexo
Determinando o número oposto de um número complexo. Como diferenciar as definições do número oposto e do número conjugado de um número complexo.