Whatsapp icon Whatsapp

Multiplicação de Números Complexos

Os números complexos são multiplicados com base na propriedade distributiva, sempre lembrando que um numeral complexo é formado por uma parte real e uma imaginária. Veja:

4 + 3i → Re(z) = 4 e Im(z) = 3
2 – 5i → Re(z) = 2 e Im(z) = –5
4 + 3i → Re(z) = 4 e Im(z) = 3
12 – 9i →Re(z) = 12 e Im(z) = –9

Multiplicando os complexos

Exemplos

a) (2 + 5i) * (1 – 2i)
2 – 4i + 5i – 10i² (lembrando que i² = – 1)
2 – 4i + 5i – 10 * (–1)
2 – 4i + 5i + 10
12 + i

b) (4 + 3i) * (2 + 6i)
8 + 24i + 6i + 18i² (lembrando que i² = – 1)
8 + 24i + 6i + 18 * (–1)
8 + 24i + 6i – 18
–10 + 30i

c) (6 – 3i) * (–3 + 7i)
–18 + 42i + 9i – 21i² (lembrando que i² = – 1)
–18 + 42i + 9i – 21 * (–1)
–18 + 42i + 9i + 21
3 + 51i

d) (10 + 10i) * (10 – 10i)
100 – 100i + 100i – 100i² (lembrando que i² = – 1)
100 – 100i + 100i – 100 * (–1)
100 + 100 + 0i
200 + 0i
200

e) 4 + 3i + (1 – 2i) * (3 + i)
4 + 3i + (3 + i – 6i – 2i²)
4 + 3i + 3 + i – 6i – 2i² (lembrando que i² = – 1)
4 + 3i + 3 + i – 6i – 2 * (–1)
4 + 3i + 3 + i – 6i + 2
9 – 2i

f) (2 – 3i) * (1 – 5i) – 4i – 8
2 – 10i – 3i + 15i² – 4i – 8 (lembrando que i² = – 1)
2 – 10i – 3i + 15 * (–1) – 4i – 8
2 – 10i – 3i – 15 – 4i – 8
2 – 15 – 8 – 10i – 3i – 4i
–21 – 17i


g) (–12 – 5i) * (5 + 5i) – 4i + 7
–60 – 60i – 25i – 25i² – 4i + 7 (lembrando que i² = – 1)
–60 – 60i – 25i – 25 * (–1) – 4i + 7
–60 – 60i – 25i + 25 – 4i + 7
–60 + 25 + 7 – 60i – 25i – 4i
–60 + 32 – 89i
–28 – 89i


h) (4 + 3i) * (2 – 5i) + (4 – 3i) * (2 + 5i)
8 – 20i + 6i – 15i² + (8 + 20i – 6i – 15i²)
8 – 20i + 6i – 15i² + 8 + 20i – 6i – 15i²
8 + 8 – 20i + 20i + 6i – 6i – 15i² – 15i²
16 – 30i² (lembrando que i² = – 1)
16 – 30 * (– 1)
46


i) (3 + 30i) * (2 – 3i) + 4 – 5i
6 – 9i + 60i – 90i² + 4 – 5i (lembrando que i² = – 1)
6 – 9i + 60i – 90 * (–1) + 4 – 5i
6 – 9i + 60i + 90 + 4 – 5i
6 + 90 + 4 – 9i + 60i – 5i
100 + 46i

Não pare agora... Tem mais depois da publicidade ;)



j) (20 – 4i) * (2 + 5i) + (8 + 9i) * (7 – 10i) + 4 + 6i
40 + 100i – 8i – 20i² + (56 – 80i + 63i – 90i²) + 4 + 6i
40 + 100i – 8i – 20i² + 56 – 80i + 63i – 90i² + 4 + 6i (lembrando que i² = – 1)
40 + 100i – 8i – 20 * (–1) + 56 – 80i + 63i – 90 * (–1) + 4 + 6i
40 + 92i + 20 + 56 – 17i + 90 + 4 + 6i
(40 + 20 + 56 + 90 + 4) + (92i – 17i + 6i)
210 + 81i

Publicado por Marcos Noé Pedro da Silva

Artigos Relacionados

Divisão de Números Complexos
Quociente entre números complexos.
Plano de Argand-Gauss (plano complexo)
Saiba o que é o plano de Argand-Gauss, aprenda a representar números complexos no plano, calcule o módulo e argumento de um número complexo.
video icon
Escrito"Matemática do Zero | Princípio fundamental da contagem" em fundo azul.
Matemática do Zero
Matemática do Zero | Princípio fundamental da contagem
Nessa aula veremos o que é o princípio fundamental da contagem. O princípio fundamental da contagem é uma técnica para calcularmos de quantas maneiras decisões podem combinar-se. Se uma decisão pode ser tomada de n maneiras e outra decisão pode ser tomada de m maneiras, o número de maneiras que essas decisões podem ser tomadas simultaneamente é calculado pelo produto de n · m.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Pessoa com as pernas na água
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
video icon
fone de ouvido, bandeira do reino unido e caderno escrito "ingles"
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
video icon
três dedos levantados
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.