Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Polinômios
  4. Produto com polinômios

Produto com polinômios

Para resolvermos um produto com polinômio aplicamos a propriedade distributiva, só que nem sempre esse é o processo mais rápido.

Polinômios são expressões algébricas com monômios, as quatro operações: multiplicação, divisão, adição e subtração são utilizadas nessas expressões. Quando a operação é de multiplicação, temos o produto com polinômios. Para fazer esse produto podemos utilizar o método tradicional, aplicando a propriedade distributiva, ou podemos fazer por dois outros métodos práticos.

Vamos relembrar inicialmente como se faz o produto com polinômios utilizando a propriedade distributiva:

Dados os polinômios: J(x) = x4 + 2x3+ 3x – 2 e Q(x) = x3+ 2x – 1, calcule J(x) . Q(x).

J(x) . Q(x) =

= (x4 + 2x3+ 3x – 2) . (x3+ 2x – 1) = Efetue o produto

= x7 + 2x5 – x4 + 2x6 + 4x4 – 2x3 + 3x4 +6x2 – 3x – 2x3 – 4x + 2 = Agrupe os termos semelhantes

= x7 + 2x5 + 2x6 – x4 + 4x4 + 3x4 - 2x3 – 2x3 +6x2 – 4x – 3x + 2 = (Efetue as adições e subtrações dos termos semelhantes)

= x7 + 2x6 + 2x5 + 6x4 – 4x3 +6x2 – 7x + 2

Acabamos de relembrar o produto com polinômios pela propriedade distributiva. Agora vamos utilizar o mesmo exemplo e resolvê-lo pelo primeiro e segundo método prático.

Primeiro método prático

Dado os polinômios: J(x) = x4 + 2x3+ 3x – 2 e Q(x) = x3+ 2x – 1, calcule J(x) . Q(x).

Nesse método iremos utilizar o algorítimo da multiplicação.

Monte o algoritmo: o polinômio de maior grau deve ser o primeiro fator, o segundo fator é o outro polinômio.

x4 + 2x3+ 3x – 2 → Polinômio J(x)

Não pare agora... Tem mais depois da publicidade ;)

x3 + 2x – 1_____ → Polinômio Q(x)

x7 + 2x6 + 0x5 + 3x4 - 2x3 + 0x2 + 0x + 0 → x3 . J(x) – O polinômio formado deve ser completo.

    + 0x6 + 2x5 + 4x4 + 0x3 + 6x2 - 4x + 0→ 2x . J(x) - O polinômio formado deve ser completo.

                0x5 – 1x4 - 2x3 + 0x2 - 3x + 2 → -1 . J(x) - O polinômio formado deve ser completo.

x7 + 2x6 + 2x5 + 6x4 – 4x3 + 6x2 - 7x + 2 → J(x) . Q(x) – Produto

Então, o produto com polinômios de J(x) . Q(x) = 3x7+ 6x6 + 2x5 + 12x4 – 8x3 + 6x2 - 7x + 2

Segundo método prático

Dado os polinômios: J(x) = x4 + 2x3+ 3x – 2 e Q(x) = x3+ 2x – 1, calcule J(x) . Q(x).

No segundo método prático utilizamos a estrutura de tabela. Antes de colocar cada monômio na tabela devemos escrever o polinômio completo para J(x) e Q(x).

J(x) = x4 + 2x3+ 0x2 + 3x – 2 → Polinômio completo J(x).

Q(x) = x3+ 0x2 + 2x – 1 → Polinômio completo Q(x).

Como já realizamos os produtos, devemos realizar a adição dos termos nas diagonais traçadas.

J(x) . Q(x) = x7+ 2x6 + 2x5 + 6x4 – 4x3 + 6x2 - 7x + 2

Existem três formas de realizar o produto com polinômios, a mais usual é aplicando a propriedade distributiva
Existem três formas de realizar o produto com polinômios, a mais usual é aplicando a propriedade distributiva
Publicado por: Naysa Crystine Nogueira Oliveira
Assuntos relacionados
Há algumas dicas básicas para resolver potenciação de monômios
Potenciação de monômios
Clique para entender a potenciação de monômios e as propriedades necessárias para resolver essa operação.
Multiplicação com polinômios
Polinômio, Monômios, Soma de monômios, Adição de Polinômios, Subtração de Polinômios, Monômios semelhantes, Multiplicação de monômio por polinômio, Multiplicação de polinômio por polinômio.
Termos semelhantes e grau de polinômios
Polinômio, Monômio, Termos semelhante, Monômio semelhante, Grau de um monômio, Grau de um polinômio, Termos semelhantes de um polinômio, Soma dos expoentes.