Whatsapp icon Whatsapp

Polinômios

Expressões algébricas que possuem monômios são consideradas polinômios. O estudo sobre essas expressões está diretamente relacionado com as operações aritméticas.
Os polinômios são expressões algébricas que possuem monômios formados por coeficiente e parte literal
Os polinômios são expressões algébricas que possuem monômios formados por coeficiente e parte literal

Um polinômio é uma expressão algébrica formada por monômios e operadores aritméticos. O monômio é estruturado por números (coeficientes) e variáveis (parte literal) em um produto, e os operadores aritméticos são: soma, subtração, divisão, multiplicação e potenciação. Para compreender melhor o que é um polinômio, veja alguns exemplos:

  • 5
    Coeficiente: 5
    Parte literal: Qualquer variável elevada a zero, ou seja, x0 = 1 → 5 . x0
    Operadores aritméticos: Multiplicação

  • Não pare agora... Tem mais depois da publicidade ;)

    2 . x . y
    Coeficiente: 2
    Parte literal: a . y
    Operadores aritméticos: Multiplicação

  • 3 . x . y + (4 . x : 2 . x)
    Coeficiente: 3, 4 e 2
    Parte literal: x .y e x
    Operadores aritméticos: Adição, multiplicação e divisão.

  • {[(2 . x + 6 . x)2 – 5] + 3 . y – 1 . x}
    Coeficiente: 1, 2, 3, 5 e 6
    Parte literal: x e y
    Operadores aritméticos: Adição, subtração, multiplicação e potenciação.

Não pare agora... Tem mais depois da publicidade ;)

Classificação de Polinômios

Os polinômios podem ser classificados de acordo com a sua quantidade de termos:

  • Monômio: Possui um único produto com coeficiente e parte literal. Exemplos:

⇒ 2 . x . y

⇒ 6

⇒ 12 . x2

  • Binômio: É um polinômio que possui somente dois monômios. Exemplos:

⇒ 4 . x . y + 5 . x

⇒ 34 . z + 12 . x

⇒ 105 . z + 25 . z2

  • Trinômio: É um polinômio que possui somente três monômios. Exemplos:

⇒ 2 . x . y + 2x - y3
                    3

⇒ x. z4 + 25 – z . x

⇒ 2 . w + 12 . x – 5 . w2

  • Polinômio: possui uma infinidade de monômios. A sua expressão geral é dada por:

    axn+a(n-1) x(n-1)+...+a2 x2+ax+a

Grau de um Polinômio

  • Grau de polinômio com uma variável: Quando o polinômio possui somente uma variável (termo desconhecido), seu grau é dado pelo maior valor que o expoente da variável assume. Exemplos:

⇒ 2 . x2 + 3 . x

Variável: x
Maior expoente em relação à variável x: 2
Grau: Polinômio de 2° grau

⇒ 3 . z + 4 + 5 . z3

Variável: z
Maior expoente em relação à variável z: 3
Grau: Polinômio de 3° grau

  • Grau do polinômio com mais de uma variável: Quando o polinômio possui mais do que uma variável, para saber o seu grau, devemos somar os expoentes de cada monômio. A maior soma de expoentes determinará o grau. Exemplo:

3 + 12 . x . y – 2 . x . y2
Grau do monômio: x1 . Y1 → 1 + 1 = 2
Grau do monômio: x . y2 → 1 + 2 = 3

Da soma de expoentes de cada monômio, obtivemos que: para (x . y), o grau é 2; e para (x . y2), o grau é 3. Sendo assim, o polinômio (3 + 12 . x . y – 2 . x . y2) é de terceiro grau.

Tipos de Polinômio

Os polinômios podem ser de dois tipos: completo ou incompleto.

  • Polinômios completos: O polinômio será completo quando a ordem dos seus expoentes for decrescente (do maior para o menor número) e não faltar nenhum expoente na sequência. Veja:

⇒ 3. x5 + 2 . x4 – x3 + 12 . x2 + 5 . x1 – 2 . x0

Observe que os expoentes em relação à variável x seguem uma sequência decrescente, que é dada por: 5, 4, 3, 2, 1 e 0.

  • Polinômios incompletos: O polinômio será incompleto quando faltar algum número na sua sequência de expoentes. Veja:

⇒ 3. x5 + 5 . x1 – 2 . x0

A forma completa desse polinômio seria: 3. x5 + 0 . x4 – 0 . x3 + 0 . x2 + 5 . x1 – 2 . x0. Faltaram os expoentes em relação à variável x: x4, x3 e x2. Por esse motivo, o polinômio é incompleto.

Publicado por Naysa Crystine Nogueira Oliveira

Artigos de Polinômios

Adição e subtração de polinômio
Redução de Polinômios.
Binômio de Newton
Entenda o que é um binômio de Newton e como calculá-lo. Veja também como usar o triângulo de Pascal nessa técnica de cálculo.
Coeficientes binomiais
Você sabe o que são coeficientes binomiais? Conheça essa importante relação e suas principais propriedades!
Dispositivo Prático de Briot-Ruffini
Você conhece o dispositivo prático de Briot-Ruffini? Aprenda a utilizá-lo na divisão polinomial.
Divisão de Polinômio por Monômio
Matemática, expressão algébrica, divisão, polinômio, monômio, divisão de monômio por monômio, divisão de polinômio por monômio, cálculo algébrico, grau de um polinômio, potência de um polinômio.
Divisão de polinômios
Clique aqui, conheça diferentes métodos que podem ser utilizados para calcular a divisão de polinômios e saiba como fazer essa divisão.
Fatoração de polinômio
Veja como fazer a fatoração de polinômio e aprenda cada um dos casos possíveis. Confira também exemplos e exercícios.
Frações polinomiais idênticas
: polinômio, definição de polinômio, fração, fração polinomial, Frações polinomiais idênticas, membros de uma igualdade, igualdade de duas frações, igualdade de duas frações idênticas.
Mínimo Múltiplo Comum de Polinômio
Determinação do mmc de polinômios na resolução de equações algébricas fracionárias.
Multiplicação de polinômios
Clique aqui e conheça os três casos de multiplicação de polinômios. Saiba como fazer essa multiplicação e veja exemplos.
Multiplicação e divisão de monômios
Conceitos das operações de multiplicação e divisão de monômios. Compreensão da multiplicação e divisão monomial para o cálculo de expressões algébricas.
Polinômios
Você sabe o que são polinômios? Ou funções polinomiais? Clique aqui e entenda!
Produto com polinômios
Você sabia que existem duas outras formas de se calcular o produto com polinômio? Descubra aqui esses dois métodos práticos.
Raízes complexas de uma equação polinomial
Aprenda a encontrar as raízes reais e complexas em um polinômio que possui pelo menos uma raiz complexa.
Teorema de D’Alembert
binômio, polinômio, divisão de polinômio por binômio, divisão, teorema do resto, teorema D’Alembert, definição do teorema do resto, definição do teorema de D’Alembert, resto de uma divisão, resto igual à zero.
Termos semelhantes e grau de polinômios
Polinômio, Monômio, Termos semelhante, Monômio semelhante, Grau de um monômio, Grau de um polinômio, Termos semelhantes de um polinômio, Soma dos expoentes.
Valor Numérico de um Polinômio
Efetuando cálculos em polinômios na determinação de seu valor numérico.
video icon
Professora ao lado do texto"Verbos irregulares".
Português
Verbos irregulares
Sabendo que o estudo de verbos não é uma tarefa fácil, nesta videoaula esclareceremos as formas de flexão dos verbos irregulares, ou seja, aqueles que, ao serem conjugados, apresentam alteração em seu radical ou em sua terminação. Não deixe de assistir!