Whatsapp icon Whatsapp

Valor Numérico de um Polinômio

Dado um polinômio p(x), temos que seu valor numérico é tal que x = a é um valor que se obtém substituindo x por a, onde a pertence ao conjunto dos números reais. Dessa forma, concluímos que o valor numérico de p(a) corresponde a p(x) onde x = a. Por exemplo, dado o polinômio p(x) = 4x² – 9x temos que seu valor numérico para x = 2 é calculado da seguinte maneira:

p(x) = 4x² – 9x
p(2) = 4 * 2² – 9 * 2
p(2) = 4 * 4 – 18
p(2) = 16 – 18
p(2) = –2


Se, ao calcularmos o valor numérico de um polinômio determinarmos p(a) = 0, temos que esse número dado por a corresponde à raiz do polinômio p(x). Observe o polinômio p(x) = x² – 6x + 8 quando aplicamos p(2) = 0.

p(2) = 2² – 6 * 2 + 8
p(2) = 4 – 12 + 8
p(2) = 12 – 12
p(2) = 0

Dessa forma, percebemos que o número 2 é raiz do polinômio p(x) = x² – 6x + 8, pois temos que p(2) = 0.



Exemplo 1

Dado o polinômio p(x) = 4x³ – 9x² + 8x – 10, determine o valor numérico de p(3).

p(3) = 4 * 3³ – 9 * 3² + 8 * 3 – 10
p(3) = 4 * 27 – 9 * 9 + 24 – 10
p(3) = 108 – 81 + 24 – 10
p(3) = 41


O valor de p(x) = 4x³ – 9x² + 8x – 10 para p(3) é 41.


Exemplo 2

Determine o valor numérico de p(x) = 5x4 – 2x³ + 3x² + 10x – 6, para x = 2.

p(2) = 5 * 24 – 2 * 23 + 3 * 22 + 10 * 2 – 6
p(2) = 5 * 16 – 2 * 8 + 3 * 4 + 20 – 6
p(2) = 80 – 16 + 12 + 20 – 6
p(2) = 90

De acordo com o polinômio fornecido temos que p(2) = 90.

Não pare agora... Tem mais depois da publicidade ;)

Por Marcos Noé
Graduado em Matemática

Publicado por Marcos Noé Pedro da Silva
Assista às nossas videoaulas

Artigos Relacionados

Adição e subtração de polinômio
Redução de Polinômios.
Binômio de Newton é uma fórmula para calcular potências de um binômio.
Binômio de Newton
Entenda o que é um binômio de Newton e como calculá-lo. Veja também como usar o triângulo de Pascal nessa técnica de cálculo.
Divisão de Polinômio por Monômio
Matemática, expressão algébrica, divisão, polinômio, monômio, divisão de monômio por monômio, divisão de polinômio por monômio, cálculo algébrico, grau de um polinômio, potência de um polinômio.
Divisão de polinômio por polinômio
Monômios, Polinômios, Divisão de polinômio por polinômio, Dividendo, Divisor, Quociente, Resto, Prova Real, Multiplicação de polinômios, Resto menor que o divisor, Resto maior que o divisor.
Utilizamos os produtos notáveis para realizar a fatoração de polinômios.
Fatoração de polinômio
Veja como fazer a fatoração de polinômio e aprenda cada um dos casos possíveis. Confira também exemplos e exercícios.
Frações polinomiais idênticas
: polinômio, definição de polinômio, fração, fração polinomial, Frações polinomiais idênticas, membros de uma igualdade, igualdade de duas frações, igualdade de duas frações idênticas.
Multiplicação e divisão envolvendo números e letras
Multiplicação e divisão de monômios
Conceitos das operações de multiplicação e divisão de monômios. Compreensão da multiplicação e divisão monomial para o cálculo de expressões algébricas.
Mínimo Múltiplo Comum de Polinômio
Determinação do mmc de polinômios na resolução de equações algébricas fracionárias.
Teorema de D’Alembert
binômio, polinômio, divisão de polinômio por binômio, divisão, teorema do resto, teorema D’Alembert, definição do teorema do resto, definição do teorema de D’Alembert, resto de uma divisão, resto igual à zero.
video icon
Física
Força centrípeta
Força centrípeta é a força que aponta para o centro de uma trajetória curvilínea, fazendo com que a direção e o sentido da velocidade de um corpo mudem a cada instante. Que tal aprendermos mais sobre essa importante aplicação das leis de Newton com esta videoaula?

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Videoaula Brasil Escola
Matemática
Área da esfera
Clique para aprender a calcular a área da esfera.
video icon
Videoaula Brasil Escola
Inglês
Estrangeirismo
Nessa videoaula você entende sobre o estrangeirismo na música "Samba do Approach."
video icon
videoaula brasil escola
História
Crise de 1929
A quebra da bolsa de valores de Nova Iorque afetou não só os EUA, como o mundo. Entenda!