Calculando o Quadrado de Números Inteiros

O quadrado de um número inteiro é calculado através da potenciação da base inteira em relação ao expoente de número dois. Dessa forma estamos multiplicando o número inteiro por ele mesmo. Os quadrados dos números seguem uma sequência lógica 1, 4, 9, 16, 25, 36, 49, etc. Essa sequência numérica pode ser demonstrada através da utilização de uma das regras dos produtos notáveis, o quadrado da soma. A expressão (a + b)² é desenvolvida da seguinte maneira: “o quadrado do primeiro termo adicionado ao dobro do primeiro termo vezes o segundo termo, adicionado ao quadrado do segundo termo”, isto é a² + 2*a*b + b².

Vamos relacionar o quadrado de um número com a expressão do quadrado da soma. Quando conhecemos o quadrado de um número descobrimos facilmente o quadrado dos seus sucessores.


O quadrado do número 7 é igual a 49 (7² = 49). Assim temos que o quadrado do número 8 é dado pela expressão (a + b)². Veja:
8 = (7 + 1)² = 7² + 2*7*1 + 1 = 49 + 14 + 1 = 64

Todos os números podem ter seus quadrados calculados dessa forma, a expressão algébrica (a + b)², permite que esses cálculos se tornem possíveis.

Número Expressão Quadrado

1 1² + 2*0*1 + 0² = 1 + 0 + 0 = 1
2 1² + 2*1*1 + 1² = 1 + 2 + 1 = 4
3 2² + 2*2*1 + 1² = 4 + 4 + 1 = 9
4 3² + 2*3*1 + 1² = 9 + 6 + 1 = 16
5 4² + 2*4*1 + 1² = 16 + 8 + 1 = 25
6 5² + 2*5*1 + 1² = 25 + 10 + 1 = 36
7 6² + 2*6*1 + 1² = 36 + 12 + 1 = 49
8 7² + 2*7*1 + 1² = 49 + 14 + 1 = 64
9 8² + 2*8*1 + 1² = 64 + 16 + 1 = 81
10 9² + 2*9*1 + 1² = 81 + 18 + 1 = 100
11 10² + 2*10*1 + 1² = 100 + 20 + 1 = 121
12 11² + 2*11*1 + 1² = 121 + 22 + 1 = 144
13 12² + 2*12*1 + 1² = 144 + 24 + 1 = 169
14 13² + 2*13*1 + 1² = 169 + 26 + 1 = 196
15 14² + 2*14*1 + 1² = 196 + 28 + 1 = 225
16 15² + 2*15*1 + 1² = 225 + 30 + 1 = 256
17 16² + 2*16*1 + 1² = 256 + 32 + 1 = 289
18 17² + 2*17*1 + 1² = 289 + 34 + 1 = 324
19 18² + 2*18*1 + 1² = 324 + 36 + 1 = 361
20 19² + 2*19*1 + 1² = 361 + 38 + 1 = 400
...                        ....                             ...

Publicado por Marcos Noé Pedro da Silva
Matemática do Zero
Matemática do Zero | Princípio fundamental da contagem
Nessa aula veremos o que é o princípio fundamental da contagem. O princípio fundamental da contagem é uma técnica para calcularmos de quantas maneiras decisões podem combinar-se. Se uma decisão pode ser tomada de n maneiras e outra decisão pode ser tomada de m maneiras, o número de maneiras que essas decisões podem ser tomadas simultaneamente é calculado pelo produto de n · m.
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos