Equação modular
Equação é uma expressão algébrica com uma ou mais incógnitas que possui uma igualdade, então, podemos dizer que uma equação modular possui essas mesmas características, sendo que a incógnita dessa equação terá que estar dentro de um módulo.
Veja alguns exemplos de equações que são modulares:
|x + 2| = 5
|x| - 5 = 8
- |2x| = 9
3 . |x|2 – 8 . |x| + 5 = 0
|x2 – 6x + 16| = 32
Para resolver uma equação modular deve-se seguir a definição de módulo de um número real:
|x| = x, se x ≥ 0
-x, se x < 0
Para compreender como aplicar essa definição em uma equação modular acompanhe o raciocínio dos exemplos abaixo:
• |x| = 7
Para descobrir o valor de x devemos pensar da seguinte forma: um número real terá sempre um valor positivo como resultado do seu módulo, e 7 é positivo, mas o valor de x poderá ser +7 ou -7, pois |+7| = 7 e |-7| = 7, portanto, x = 7 ou x = -7
• |x| = 0
Como zero tem valor nulo (não possui sinal) dizemos que o único valor que x poderá assumir será 0, portanto, x = 0.
• |x| = -8
Como um número real terá sempre um valor positivo ou nulo e -8 é negativo não irá existir valor real para x, portanto, a solução dessa equação será vazia.
Quando dentro do módulo estiver uma operação com a incógnita, devemos calcular o módulo invertendo o sinal do 1º ou do 2º membro da igualdade.
• |x + 2| = 4
x + 2 = 4 ou x + 2 = - 4
x = 4 – 2 x = - 4 - 2
x = 2 x = - 6
• |x + 6| = x + 6
x + 6 = x + 6 ou x + 6 = - (x + 6)
x – x = 6 – 6 x + 6 = - x – 6
0 = 0 x + x = - 6 – 6
2x = - 12
x = -6
S = {x R | x ≥ -6}
• |x – 3| + 4x = 7
|x – 3| = 7 – 4x
x – 3 = 7 – 4x ou x – 3 = - (7 – 4x)
x + 4x = 7 + 3 x – 3 = -7 + 4x
5x = 10 x – 4x = -7 + 3
x = 2 -3x = -4
x = 4 / 3
• |2x - 2| = |5 - x|
2x -2 = 5 - x ou 2x – 2 = - (5 – x)
2x + x = 5 + 2 2x – 2 = -5 + x
3x = 7 2x – x = - 5 + 2
x = 7 / 3 x = - 3
Veja alguns exemplos de equações que são modulares:
|x + 2| = 5
|x| - 5 = 8
- |2x| = 9
3 . |x|2 – 8 . |x| + 5 = 0
|x2 – 6x + 16| = 32
Para resolver uma equação modular deve-se seguir a definição de módulo de um número real:
|x| = x, se x ≥ 0
-x, se x < 0
Para compreender como aplicar essa definição em uma equação modular acompanhe o raciocínio dos exemplos abaixo:
• |x| = 7
Para descobrir o valor de x devemos pensar da seguinte forma: um número real terá sempre um valor positivo como resultado do seu módulo, e 7 é positivo, mas o valor de x poderá ser +7 ou -7, pois |+7| = 7 e |-7| = 7, portanto, x = 7 ou x = -7
• |x| = 0
Como zero tem valor nulo (não possui sinal) dizemos que o único valor que x poderá assumir será 0, portanto, x = 0.
• |x| = -8
Como um número real terá sempre um valor positivo ou nulo e -8 é negativo não irá existir valor real para x, portanto, a solução dessa equação será vazia.
Quando dentro do módulo estiver uma operação com a incógnita, devemos calcular o módulo invertendo o sinal do 1º ou do 2º membro da igualdade.
• |x + 2| = 4
x + 2 = 4 ou x + 2 = - 4
x = 4 – 2 x = - 4 - 2
x = 2 x = - 6
• |x + 6| = x + 6
x + 6 = x + 6 ou x + 6 = - (x + 6)
x – x = 6 – 6 x + 6 = - x – 6
0 = 0 x + x = - 6 – 6
2x = - 12
x = -6
S = {x R | x ≥ -6}
• |x – 3| + 4x = 7
|x – 3| = 7 – 4x
x – 3 = 7 – 4x ou x – 3 = - (7 – 4x)
x + 4x = 7 + 3 x – 3 = -7 + 4x
5x = 10 x – 4x = -7 + 3
x = 2 -3x = -4
x = 4 / 3
• |2x - 2| = |5 - x|
2x -2 = 5 - x ou 2x – 2 = - (5 – x)
2x + x = 5 + 2 2x – 2 = -5 + x
3x = 7 2x – x = - 5 + 2
x = 7 / 3 x = - 3
Publicado por Danielle de Miranda
Artigos Relacionados
Equação Matemática para o Movimento de Queda Livre
Clique aqui e compreenda mais sobre a equação matemática para o movimento de queda livre.
Equação exponencial
Entenda o que é uma equação exponencial. Resolva uma equação exponencial, e use as propriedades de potência para encontrar a solução de equações exponenciais.
Equações Exponenciais
Resolução de equações exponenciais com auxílio do logaritmo
História
Grécia Antiga: Os Cretenses
Assista à nossa videoaula para conhecer a história dos cretenses. Confira também, no nosso canal, outras informações sobre a Grécia Antiga.
Últimas notícias
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos
Teorias evolucionistas
As teorias apresentam como ponto principal a defesa de que os organismos do planeta sofrem modificações ao longo do tempo.
Osmose
Osmose é um processo de movimentação da água através de uma membrana semipermeável.
Coluna vertebral
Estrutura que forma o eixo do corpo, garante a sustentação e a movimentação do corpo.
Operações matemáticas básicas
São elas a adição, a subtração, a multiplicação e a divisão.
Números
Os números são utilizados para representar quantidades, ordem e medidas.
Inflação
O aumento acentuado dos preços é uma característica da inflação.
O que são big techs?
Big techs são grandes empresas de tecnologia que dominam o cenário global de produção de informações.
Patrimônio cultural
Os patrimônios culturais, são importantes registros materiais ou imateriais da história de um povo.
Quilombolas
Quilombolas são membros remanescentes das comunidades chamadas quilombos.
Fontes de energia
Energia das Marés
Entenda como a força gravitacional do Sol e da Lua interferem nas marés.
Mecânica
Plano inclinado com atrito
Decompor as forças é uma das etapas para cálculos que envolvem o plano inclinado com atrito.
Ondulatória
Função de onda
Ao estudarmos as ondas vimos que elas têm origem em meios elásticos, como em cordas, na superfície da água, do ar, entenda.
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.