Multiplicação de matrizes

A multiplicação de matrizes A e B é uma operação que tem como produto uma matriz C cujos elementos resultam de operações entre as linhas de A e as colunas de B.
Multiplicação entre uma matriz 3x2 e uma matriz 2x2. (Créditos: Paulo José Soares Braga | Mundo Educação)

A multiplicação de matrizes é uma operação entre matrizes, conjuntos de dados divididos por linhas e colunas. Essa operação só pode ser realizada se o número de colunas da primeira matriz for igual ao número de linhas da segunda matriz. O resultado dessa multiplicação será uma nova matriz (a matriz produto) com a quantidade de linhas da primeira matriz e a quantidade de colunas da segunda matriz.

Leia também: Adição e subtração de matrizes — como fazer?

Resumo sobre multiplicação de matrizes

  • A multiplicação de matrizes é uma operação que resulta em uma nova matriz, chamada de matriz produto.
  • Os elementos da matriz produto são relações das linhas da primeira matriz com as colunas da segunda matriz.
  • A multiplicação de matrizes só é possível quando o número de colunas da primeira matriz é igual ao número de linhas da segunda matriz.
  • Se a multiplicação existir, a matriz produto terá a quantidade de linhas da primeira matriz e a quantidade de colunas da segunda matriz.
  • Para multiplicar um número real k por uma matriz A, basta multiplicar k por cada elemento de A.
  • A matriz identidade é uma matriz quadrada em que todos os elementos da diagonal principal são iguais a 1 e os outros elementos são iguais a 0.
  • A inversa de uma matriz M é uma matriz M-1 tal que M⋅M-1=I.

Videoaula sobre multiplicação de matrizes

Como calcular a multiplicação de matrizes?

A multiplicação de matrizes não é uma operação intuitiva. Enquanto a adição e subtração de matrizes são realizadas entre os elementos que ocupam a mesma posição, o processo de multiplicação é totalmente diferente.

Em primeiro lugar, não são quaisquer matrizes que podem ser multiplicadas. Assim, antes de fazer qualquer cálculo, é necessário analisar a condição de existência para essa operação.

Considere uma matriz A de ordem mxn e uma matriz B de ordem pxq. A multiplicação AB, nessa ordem, só é possível se n = p. Isso significa que duas matrizes só podem ser multiplicadas se o número de colunas da primeira matriz for igual ao número de linhas da segunda matriz.

Além disso, supondo que a AB exista, a matriz C resultante terá o número de linhas de A (primeira matriz) e o número de colunas de B (segunda matriz). No exemplo anterior, a ordem de C será mxq.

Mas como obter a matriz C, ou seja, como calcular a multiplicação AB?

Considere cij o elemento da matriz C na linha i e coluna j. Cada elemento cij é a soma dos produtos entre os elementos correspondentes da linha i de A (primeira matriz) e da coluna j de B (segunda matriz). Parece difícil? Vejamos alguns exemplos para ilustrar esse processo.

  • Exemplo 1:

Calcule a multiplicação AB para as matrizes

Resolução:

Verificando a condição de existência para a multiplicação AB: note que o número de colunas da matriz A é igual ao número de linhas da matriz B. Assim, existe a multiplicação AB.

Considere C = AB. Como o número de linhas de A é 2 e o número de colunas de B é 2, a ordem de C é 2x2.

Agora vamos encontrar cada elemento de C. Lembre-se de que cada elemento cij corresponde a uma relação entre a linha i de A e a coluna j de B:

Portanto,


Logo,

  •  Exemplo 2:

Calcule a multiplicação BA para as matrizes

Resolução:

Verificando a condição de existência para a multiplicação BA: note que o número de colunas da matriz B é igual ao número de linhas da matriz A. Assim, existe a multiplicação B A.

Considere . Como o número de linhas de B é 3 e o número de colunas de A é 3, a ordem de C é 3x3.

Agora vamos encontrar cada elemento de C. Observe que a multiplicação nesse caso é BA:

Portanto,

Logo,

  • Exemplo 3:

Calcule a multiplicação AB para as matrizes

Resolução:

Verificando a condição de existência para a multiplicação AB: note que o número de colunas da matriz A (3) é diferente do número de linhas da matriz B (2). Assim, a multiplicação AB não existe.

Importante: Vale destacar que, geralmente, a multiplicação de matrizes não é comutativa, ou seja, A B B A. Considere o exemplo 3, em que a ordem de A é 4x3 e a ordem de B é 2x4. A multiplicação AB não existe, mas a multiplicação BA existe e resulta em uma matriz C de ordem 2x3.

Multiplicação de um número real por uma matriz

A multiplicação de um número real por uma matriz é outra operação envolvendo matrizes. Considere um número real k e uma matriz . A multiplicação entre k e A resulta em uma matriz cujos elementos são o produto . Em outras palavras, para multiplicar um número real k por uma matriz A, basta multiplicar k por cada elemento da matriz A.

  • Exemplo:

Considere . Determine 2A.

Resolução:

Matriz identidade

A matriz identidade é a matriz quadrada (matriz que possui o número de linhas igual ao número de colunas) cujos elementos da diagonal principal são iguais a 1 e os demais elementos são iguais a 0. Essa matriz é representada pela notação In, em que n é a ordem da matriz.

  • Exemplos:

Uma propriedade importante da matriz identidade está relacionada à multiplicação de matrizes. Considere uma matriz quadrada A de ordem n. Assim, temos que

Matriz inversa

A matriz inversa da matriz M é a matriz M-1. Ela é assim chamada se

Isso significa que o produto entre uma matriz M e sua inversa resulta em uma matriz identidade.

Importante: Nem todas as matrizes apresentam inversa.

Veja também: Como determinar a igualdade entre matrizes?

Exercícios resolvidos sobre multiplicação de matrizes

Questão 1

(Unicamp) Considere a e b números reais tais que a matriz  satisfaz a equação , em que I é a matriz identidade de ordem 2. Logo, o produto ab é igual a

A) – 2.

B) – 1.

C) 1.

D) 2.

Resolução:

Alternativa A.

Primeiro vamos calcular A2, ou seja, AA. Como A é uma matriz quadrada, concluímos que essa multiplicação existe e resulta em uma matriz 2x2.

Ainda,

Portanto,

 

Logo,

Ou seja,

Questão 2

(FGV) Dada a matriz  e sabendo que a matriz  é a matriz inversa da matriz A, podemos concluir que a matriz X, que satisfaz a equação matricial AX = B, tem como soma de seus elementos o número

A) 14.

B) 13.

C) 15.

D) 12.

E) 16.

Resolução:

Alternativa B.

Multiplicando a equação AX = B por A-1 à esquerda, temos

Como A-1 é inversa de A, então , em que I é a matriz identidade.

Como I é a matriz identidade, . Assim,

Portanto, a soma dos elementos é

10 + 3 = 13

Fontes

BOLDRINI, J. L. et al. Álgebra Linear. 3ª ed. São Paulo: Harper & Row do Brasil, 1980.

LIMA, Elon Lages. Álgebra Linear. Rio de Janeiro: IMPA, 2014

Publicado por Maria Luiza Alves Rizzo
Matemática do Zero
Matemática do Zero| Probabilidade
Nessa aula veremos o que probabilidade é o estudo das chances de obtenção de cada resultado de um experimento aleatório. A essas chances são atribuídos os números reais do intervalo entre 0 e 1. Para isso, inicaremos a aula falando o que é espaço amostral e evento.
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos