Whatsapp icon Whatsapp

Matriz quadrada

A matriz quadrada é aquela que possui o número de linhas igual ao número de colunas.
Representação de uma matriz quadrada.
A matriz quadrada é aquela que possui o mesmo número de linhas e colunas.

A matriz quadrada é um tipo especial de matriz. Uma matriz é classificada como quadrada quando possui o número de linhas igual ao número de colunas. A matriz quadrada possui aplicações importantes, como na resolução de sistemas lineares. Ela possui duas diagonais, a principal e a secundária, que são essenciais para se calcular o determinante da matriz. O determinante da matriz é um número associado à matriz quadrada. Podemos calculá-lo, e o método para calcular esse determinante depende do formato da matriz — se ela é de ordem 1, ordem 2 ou ordem 3.

Leia também: Matriz triangular — um tipo de matriz quadrada

Resumo sobre matriz quadrada

  • A matriz quadrada é aquela que possui o número de linhas igual ao número de colunas.

\(A\ =\ \left[\begin{matrix}a_{11}&\cdots&a_{1n}\\\vdots&\ddots&\vdots\\a_{n1}&\cdots&a_{nn}\\\end{matrix}\right]\)

  • Ela possui diagonal principal e diagonal secundária.
  • O determinante da matriz é um número associado a ela, exclusivo de matrizes quadradas.
  • O método para calcular o determinante da matriz depende do número de linhas e colunas dessa matriz.

Não pare agora... Tem mais depois da publicidade ;)

O que é matriz quadrada?

A matriz quadrada é a aquela que possui o número de linhas m igual ao número de colunas n. As matrizes quadradas mais comuns são as de ordem 1 (ou seja, 1 linha e 1 coluna), as de ordem 2 e as de ordem 3.

  •  \(A=\left[2\right]\) → matriz quadrada com 1 linha e 1 coluna
  • \(B\ =\ \left[\begin{matrix}1&2\\3&4\\\end{matrix}\right]\) → matriz quadrada com 2 linhas e 2 colunas
  • \(C\ =\left[\begin{matrix}1&6&7\\2&5&8\\3&4&9\\\end{matrix}\right]\ \) → matriz quadrada com 3 linhas e 3 colunas

De modo geral, as matrizes quadradas são:

\(A=\left[a_{11}\right]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ B\ =\ \left[\begin{matrix}a_{11}&a_{12}\\a_{21}&a_{22}\\\end{matrix}\right]\ \ \ \ \ \ \ \ \ \ \ \ \ C\ =\ \left[\begin{matrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\\\end{matrix}\right]\)

As matrizes acima são, respectivamente, de ordem 1, ordem 2 e ordem 3. Podemos ter matrizes quadradas de ordem maior que 3, com quantas linhas e quantas colunas forem necessárias.

Matriz quadrada: diagonal principal e diagonal secundária

Outros elementos importantes nas matrizes quadradas são a diagonal principal e a diagonal secundária.

Veja, destacados em vermelho, os elementos que ocupam a diagonal principal em uma matriz quadrada de ordem 2 e em uma de ordem 3 e note que o número da linha e o número da coluna é sempre o mesmo.

Matriz de ordem 2 e matriz de ordem 3 com suas diagonais principais destacadas em vermelho.

Além da principal, existe a outra diagonal, conhecida como diagonal secundária. Veja, a seguir, a diagonal secundária destacada em azul.

Matriz de ordem 2 e matriz de ordem 3 com suas diagonais secundárias destacadas em azul.

  • Exemplo 1:

Veja os termos que compõem a diagonal principal e a diagonal secundária:

\(A\ =\ \left[\begin{matrix}-1\ &3\\2&-2\\\end{matrix}\right]\)

A diagonal principal é composta pelos termos:

\(a_{11}=-\ 1\ \) \(e\) \(a_{22}=-2\)

A diagonal secundária é composta pelos termos:

\(a_{12}=3\) \(e\) \(a_{21}=2\)

  • Exemplo 2:

\(B\ =\ \left[\begin{matrix}6&-\ 2\ &0\\3&2&1\\4&-\ 5\ &5\\\end{matrix}\right]\)

A diagonal principal é composta pelos termos:

\(a_{11}=6,\) \(a_{22}=2 \) \(e \) \(a_{33}=5\)

A diagonal secundária é composta pelos termos

\(a_{13}=0,\) \(a_{22}=2\ \ \)\(e \) \(a_{31}=4\)

Veja também: O que é matriz inversa?

Cálculo do determinante de uma matriz

O determinante é um valor associado à matriz que auxilia na resolução de problemas envolvendo matrizes. Veja, a seguir, como calcular o determinante de matrizes de ordem 1, ordem 2 e ordem 3.

  • Determinante de matriz de ordem 1

Como a matriz de ordem 1 possui um único termo, o seu determinante será igual a esse termo. Chamamos de \(det\left(A\right) \) o determinante da matriz A. Se a matriz \(A = [a_{11}], \), o determinante de A é igual a:

\(det(A) = a_{11}\)

  • Exemplo:

Sendo:

\(A=\left[\ 3\ \right]\)

Então:

\(det(A)=3\)

  • Determinante de matriz de ordem 2

Para descobrir o determinante de uma matriz de ordem 2, calculamos a diferença entre o produto dos termos da diagonal principal e os termos da diagonal secundária.

\(A=\left[\begin{matrix}a_{11}&a_{12}\\a_{21}&a_{22}\\\end{matrix}\right]\ \ \) 

\(det\left(A\right)=a_{11}\cdot a_{22}-a_{21}\cdot a_{12}\)

  • Exemplo:

\(A=\left[\begin{matrix}2\ &3\\4&5\\\end{matrix}\right]\ \) 

\(det\left(A\right)=5\cdot2-4\cdot3=10-12=-2\ \)

  • Determinante de uma matriz de ordem 3

Quanto maior o número de linhas e colunas de uma matriz, mais complexos são os métodos para se calcular o seu determinante. O método mais comum para o cálculo do determinante da matriz de ordem 3 é conhecido como regra de Sarrus. Consideremos a matriz de ordem 3:

\(A\ =\ \left[\begin{matrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\\\end{matrix}\right]\)

Primeiramente, repetimos ao final da matriz as suas duas primeiras colunas:

\(A=\left|\begin{matrix}\begin{matrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\\\end{matrix}\\\end{matrix}\right|\begin{matrix}a_{11}&a_{12}\\a_{21}&a_{22}\\a_{31}&a_{32}\\\end{matrix}\)

Agora, calculamos três produtos: o produto dos termos da diagonal principal e das duas diagonais paralelas a ela. Posteriormente, somamos esses três produtos e os chamamos de \(S_1\).

Matriz A com as duas primeiras colunas duplicadas e com a diagonal principal e as diagonais paralelas com cores diferentes.

Soma do produto dos termos da diagonal principal da matriz A com o produto dos termos das diagonais paralelas a ela.

Calculamos também o produto entre os termos da diagonal secundária e das outras duas diagonais paralelas a ela e somamos esses três produtos como \(S_2\).

Matriz A com as duas primeiras colunas duplicadas e com a diagonal secundária e as diagonais paralelas com cores diferentes.

Soma do produto dos termos da diagonal secundária da matriz A com o produto dos termos das diagonais paralelas a ela.

O determinante da matriz será a diferença entre \(S_1\) e \(S_2\):

 \({det(A)\ =\ a}_{11}\cdot a_{22}\cdot a_{23}+a_{12}\cdot a_{23}\cdot a_{31}+a_{13}\cdot a_{21}\cdot a_{32}\ -\ (a_{13}\cdot a_{22}\cdot a_{31}+a_{11}\cdot a_{23}\cdot a_{32}+a_{12}\cdot a_{21}\cdot a_{33})\)

  • Exemplo:

Calcule o determinante da matriz:

\(A\ =\left[\begin{matrix}4&5&3\\2&-1&0\\1&3&1\\\end{matrix}\right]\ \) 

Resolução:

De início, copiamos as duas colunas ao final da matriz:

\(\left|\begin{matrix}4&5&3\\2&-1&0\\1&3&1\\\end{matrix}\right|\begin{matrix}4&5\\2&-1\\1&3\\\end{matrix}\)

Agora, calculamos o seu determinante:

\(det\left(A\right)=4\cdot\left(-1\right)\cdot1+5\cdot0\cdot1+3\cdot2\cdot3-(1\cdot\left(-1\right)\cdot3+3\cdot0\cdot4+1\cdot2\cdot5)\)

\(det\left(A\right)=-4+0+18-\left(-3+0+10\right)\)

\(det\left(A\right)=14-\left(+7\right)\)

\(det\left(A\right)=14-7\)

\(det(A)=7\)

Saiba mais: Como é feita a adição e a subtração de matrizes?

Exercícios resolvidos sobre matriz quadrada

Questão 1

Uma matriz pode ser definida como matriz quadrada quando:

A) o número de linhas é igual ao quadrado do número de colunas.

B) o número de colunas é igual ao quadrado do número de linhas.

C) o número de linhas é igual ao dobro do número de colunas.

D) o número de linhas é igual ao número de colunas.

E) o número de linhas e colunas é par.

Resolução:

Alternativa D

Para que a matriz seja considerada quadrada, é necessário que o número de linhas seja igual ao número de colunas.

Questão 2

Analise a matriz quadrada a seguir. Seu determinante é

\(A\ =\ \left[\begin{matrix}-2\ &-3\\4&5\\\end{matrix}\right]\)

A) 2

B) 3

C) 4

D) 5

E) 6

Resolução:

Alternativa A

Calculando o determinante, temos:

\(det\left(A\right)=-2\cdot5-4\cdot\left(-3\right)\)

\(det\left(A\right)=-10+12\)

\(det\left(A\right)=2\)

Publicado por Raul Rodrigues de Oliveira
Assista às nossas videoaulas

Artigos Relacionados

Adição e subtração de matrizes
Saiba como operar duas ou mais matrizes. Veja tudo sobre as operações de adição e subtração de matrizes. Entenda as condições para realizar essas operações.
Calculo da matriz inversa por meio de determinantes
Determinando a Matriz Inversa.
Cofator de uma matriz
O cálculo do cofator de uma matriz qualquer auxilia no cálculo do determinante através do teorema de Laplace.
Determinantes de matrizes de ordem 1, 2 e 3
Saiba o que é um determinante e aprenda como calcular determinantes de matrizes de ordem 1, 2 e 3. Veja exemplos e resolva exercícios do tema.
Existem casos especiais de matrizes que são classificados de acordo com a característica da matriz.
Matriz
Você sabe o que é matriz? Clique aqui, aprenda a realizar soma, subtração e multiplicação de matrizes e veja também os casos particulares existentes.
Matriz triangular é um caso especial de matriz quadrada e pode ser classificada em triangular superior ou triangular inferior
Matriz Triangular
Saiba mais sobre a matriz triangular e aprenda a calcular seu determinante.
Matriz inversa
Entenda o que é uma matriz inversa e como encontrá-la. Aprenda a verificar também se uma matriz admite inversa ou não e conheça a matriz identidade de ordem 2 e 3.
Matriz A
Matriz simétrica
Entenda o que é uma matriz simétrica bem como a matriz antissimétrica. Confira ainda exemplos e exercícios resolvidos.
Em uma matriz, os elementos estão dispostos em linhas e colunas.
Matrizes e Determinantes
Fique por dentro de todo o conteúdo que envolve Matrizes e Determinantes!
Aprenda a realizar a multiplicação entre matrizes
Multiplicação de Matrizes
Aprenda a realizar a multiplicação de matrizes e veja em quais situações é possível realizá-la.
As propriedades podem facilitar o cálculo dos determinantes e até dispensar as contas em algumas situações.
Propriedades dos determinantes
Você sabia que existem estratégias que ajudam na hora de calcular o determinante de uma matriz? Confira aqui todas as propriedades dos determinante
Regra de Chió nos cálculos dos determinantes
Como calcular determinantes de matrizes com ordem superior a três, utilizando a regra de Chió.
A regra de Sarrus é um método para calcular determinantes.
Regra de Sarrus
Conheça a regra de Sarrus. Aprenda a calcular o determinante de uma matriz de ordem 2 e de ordem 3 por essa regra. Entenda como ela funciona.
video icon
Geografia
Elementos do clima
Assista à videoaula e conheça os elementos que compõem o clima. Entenda como os elementos do clima se comportam e como eles podem influenciar os tipos climáticos do planeta.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Sigmund Freud
Filosofia
Sigmund Freud
Nessa videoaula você conhecerá mais sobre a vida e estudos do "pai" da psicanálise.
video icon
Thumb Brasil Escola
Literatura
Realismo fantástico
Trazemos uma análise sobre realismo fantástico. Assista já!
video icon
Thumb Brasil Escola
Química
Funções orgânicas
Tire um tempo para entender melhor o que são as amidas