Pontos notáveis da parábola


Podemos destacar em uma parábola três pontos notáveis, ou seja, com esses pontos podemos construir com mais facilidade um gráfico de uma função do 2ª grau. Eles se dividem em: pontos de intersecção da parábola com o eixo Ox, pontos de intersecção da parábola com o eixo Oy e vértices da parábola.

Pontos de interseção da parábola com o eixo Ox


Esses pontos podem ou não existir. Caso existam iremos obtê-los resolvendo a função y = ax2 + bx + c, atribuímos valor zero para y, transformando em uma equação do segundo grau: ax2 + bx + c = 0, sendo a, b e c seus coeficientes com a ≠ 0.

A resolução dessa equação nos permitirá encontrar o valor do discriminante Δ, esse irá determinar em quantos pontos a parábola irá cortar o eixo Ox.

Δ > 0; o eixo Ox será cortado pela parábola em dois pontos distintos, pois x’ ≠ x’’.


Δ = 0; o eixo Ox será cortado pela parábola em um único ponto, pois x’ = x’’.

Δ < 0; a parábola não corta o eixo Ox.

Pontos de intersecção da parábola com o eixo Oy

O ponto no qual a parábola cortará o eixo Oy dependerá do valor do coeficiente c, ou seja, se c = 2 isso significa que a parábola irá cortar o eixo Oy no ponto de coordenada 2.

Portanto, podemos concluir que o ponto de intersecção da parábola com o eixo Oy, de uma forma geral, ficará igual a (0, c).

Vértices da parábola

Esse ponto é determinado pelo par ordenado V(xv e yv). Eles são determinados pelas seguintes fórmulas:

xv = - b
2a

yv = - Δ
4a
Publicado por Marcos Noé Pedro da Silva
História
Grécia Antiga: Os Cretenses
Assista à nossa videoaula para conhecer a história dos cretenses. Confira também, no nosso canal, outras informações sobre a Grécia Antiga.
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos