Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Função
  4. Função do 1º grau

Função do 1º grau

A formação de uma função do 1º grau é expressa da seguinte forma: y = ax + b, onde a e b são números reais e a é diferente de 0.

Consideremos x e y duas variáveis, sendo uma dependente da outra, isto é, para cada valor atribuído a x corresponde um valor para y. Definimos essa dependência como função, nesse caso, y está em função de x. O conjunto de valores conferidos a x deve ser chamado de domínio da função e os valores de y são a imagem da função.

Toda função é definida por uma lei de formação, no caso de uma função do 1º grau a lei de formação será a seguinte: y = ax + b, onde a e b são números reais e a ≠ 0.
Esse tipo de função deve ser dos Reais para os Reais.

A representação gráfica de uma função do 1º grau é uma reta. Analisando a lei de formação y = ax + b, notamos a dependência entre x e y, e identificamos dois números: a e b. Eles são os coeficientes da função, o valor de a indica se a função é crescente ou decrescente e o valor de b indica o ponto de intersecção da função com o eixo y no plano cartesiano. Observe:

Função crescente                                                            Função decrescente




Função crescente: à medida que os valores de x aumentam, os valores correspondentes em y também aumentam.

Função decrescente: à medida que os valores de x aumentam, os valores correspondentes de y diminuem.


Exemplos de funções do 1º grau

y = 4x + 2, a = 4 e b = 2

y = 5x – 9, a = 5 e b = –9

y = – 2x + 10, a = – 2 e b = 10

y = 3x, a = 3 e b = 0

y = – 6x – 1, a = – 6 e b = – 1 

Não pare agora... Tem mais depois da publicidade ;)

y = – 7x + 7, a = –7 e b = 7

Raiz ou zero de uma função do 1º grau

Para determinar a raiz ou o zero de uma função do 1º grau é preciso considerar
y = 0. De acordo com gráfico, no instante em que y assume valor igual a zero, a reta intersecta o eixo x em um determinado ponto, determinando a raiz ou o zero da função.

Vamos determinar a raiz das funções a seguir:

y = 4x + 2
y = 0
4x + 2 = 0
4x = –2
x = –2/4
x = –1/2
A reta representada pela função y = 4x + 2 intersecta o eixo x no seguinte valor: –1/2


y = – 2x + 10
y = 0
– 2x + 10 = 0
– 2x = – 10 (–1)
2x = 10
x = 10/2
x = 5
A reta representada pela função y = – 2x + 10 intersecta o eixo x no seguinte valor: 5 


y = – 7x + 7
y = 0
–7x + 7 = 0
–7x = –7
x = 1
A reta representada pela função y = –7x + 7 intersecta o eixo x no seguinte valor: 1

y = 3x
y = 0
3x = 0
x = 0
A reta representada pela função y = 3x intersecta o eixo x no seguinte valor: 0

Publicado por: Gabriel Alessandro de Oliveira
Artigo relacionado
Teste agora seus conhecimentos com os exercícios deste texto
Assista às nossas videoaulas
Lista de Exercícios

Questão 1

Determine os zeros das funções a seguir:

a) y = 5x + 2

b) y = – 2x

c) f(x) =  x + 4
              
2

Questão 2

Classifique cada uma das funções seguintes em crescente ou decrescente:

a) y = 4x + 6

b) f(x) = – x + 10

c) y = (x + 2)2 – (x – 1)2

Mais Questões
Assuntos relacionados
Função par e função ímpar
Definição de função, Diagrama de função, Gráfico de função, Função par, Função ímpar, Tipo de função, Conjunto, Elemento de um conjunto, Plano cartesiano, Gráfico cartesiano.
Pontos notáveis da parábola
Função do segundo grau, Função, Gráfico de função, parábola, concavidade, parábola para baixo, concavidade para cima, Construção de gráfico, coeficiente a positivo, Coeficiente a negativo, raízes de uma função, quantidade de raízes.
Coordenadas do Vértice de uma Parábola
Determinando o ponto de retorno da parábola relativa ao gráfico da função do 2º grau.
Gráfico de uma Função do 1º grau
Representação gráfica de uma função do 1º grau.
Função injetora
Definição de uma função injetora. Compreendendo a definição de uma função injetora e sua aplicabilidade.
Confira o que é uma função constante e como é seu gráfico
Função constante
Você já ouviu falar de função constante? Confira sua definição e como o seu gráfico caracteriza-se!
Confira o que é uma função linear e como é o seu gráfico!
Função Linear
Você sabe o que é uma função linear? Confira esse tipo especial de função afim!
Nessa figura, temos três funções: a raiz, a do segundo grau e a linear
Função raiz
Você conhece o gráfico e a formulação da função raiz? Acesse e descubra!
O gráfico de funções do segundo grau é uma parábola
Cinco passos para construir o gráfico de uma função do 2º grau
Aprenda a construir o gráfico de uma função do 2º grau em cinco passos!
Gráfico de uma função: uma das formas de representá-la
Função bijetora
Clique para aprender o que é uma função bijetora a partir das definições de função, função injetora e função sobrejetora.
O gráfico da função crescente está inclinado para cima, e o da função descrente está inclinado para baixo
Função crescente e decrescente
Clique para descobrir o que são funções crescentes, decrescentes e constantes, além de obter exemplos de cada uma delas.
No gráfico da função exponencial, todos os valores da função estão acima do eixo x
Propriedades da função exponencial
Clique e aprenda as propriedades da função exponencial que podem facilitar os cálculos envolvendo essas funções com expoente variável.
Relação
Relação, Conjunto, Relação entre conjuntos, Representação de conjunto, Representação de relação, Regra, Diagrama, Par ordenado, Domínio, Imagem, Gráfico de uma relação.
Função exponencial
Clique aqui e conheça a função exponencial. Aprenda como fazer a análise e construir o gráfico desse tipo de função. Teste sua compreensão resolvendo os exercícios.
Domínio, Contradomínio e Imagem de uma Função
Conhecendo o domínio, o contradomínio e a imagem de uma função.
Áreas de Regiões Curvas
Você sabe o que são áreas de regiões curvas? Clique aqui e entenda!
Gráfico de Inequações do 1º Grau
Representando o gráfico de uma inequação.