Whatsapp icon Whatsapp

Função do 1º grau

A formação de uma função do 1º grau é expressa da seguinte forma: y = ax + b, onde a e b são números reais e a é diferente de 0.

Consideremos x e y duas variáveis, sendo uma dependente da outra, isto é, para cada valor atribuído a x corresponde um valor para y. Definimos essa dependência como função, nesse caso, y está em função de x. O conjunto de valores conferidos a x deve ser chamado de domínio da função e os valores de y são a imagem da função.

Toda função é definida por uma lei de formação, no caso de uma função do 1º grau a lei de formação será a seguinte: y = ax + b, onde a e b são números reais e a ≠ 0.
Esse tipo de função deve ser dos Reais para os Reais.

A representação gráfica de uma função do 1º grau é uma reta. Analisando a lei de formação y = ax + b, notamos a dependência entre x e y, e identificamos dois números: a e b. Eles são os coeficientes da função, o valor de a indica se a função é crescente ou decrescente e o valor de b indica o ponto de intersecção da função com o eixo y no plano cartesiano. Observe:

Função crescente                                                            Função decrescente




Função crescente: à medida que os valores de x aumentam, os valores correspondentes em y também aumentam.

Função decrescente: à medida que os valores de x aumentam, os valores correspondentes de y diminuem.


Exemplos de funções do 1º grau

y = 4x + 2, a = 4 e b = 2

y = 5x – 9, a = 5 e b = –9

y = – 2x + 10, a = – 2 e b = 10

y = 3x, a = 3 e b = 0

y = – 6x – 1, a = – 6 e b = – 1 

Não pare agora... Tem mais depois da publicidade ;)

y = – 7x + 7, a = –7 e b = 7

Raiz ou zero de uma função do 1º grau

Para determinar a raiz ou o zero de uma função do 1º grau é preciso considerar
y = 0. De acordo com gráfico, no instante em que y assume valor igual a zero, a reta intersecta o eixo x em um determinado ponto, determinando a raiz ou o zero da função.

Vamos determinar a raiz das funções a seguir:

y = 4x + 2
y = 0
4x + 2 = 0
4x = –2
x = –2/4
x = –1/2
A reta representada pela função y = 4x + 2 intersecta o eixo x no seguinte valor: –1/2


y = – 2x + 10
y = 0
– 2x + 10 = 0
– 2x = – 10 (–1)
2x = 10
x = 10/2
x = 5
A reta representada pela função y = – 2x + 10 intersecta o eixo x no seguinte valor: 5 


y = – 7x + 7
y = 0
–7x + 7 = 0
–7x = –7
x = 1
A reta representada pela função y = –7x + 7 intersecta o eixo x no seguinte valor: 1

y = 3x
y = 0
3x = 0
x = 0
A reta representada pela função y = 3x intersecta o eixo x no seguinte valor: 0

Publicado por Gabriel Alessandro de Oliveira
Assista às nossas videoaulas

Artigos Relacionados

Domínio, contradomínio e imagem de uma função
Conheça a definição de função, de domínio, de contradomínio e de imagem de uma função. Saiba qual a relação entre todos esses elementos observando os exemplos.
Função exponencial
Clique aqui e conheça a função exponencial. Aprenda como fazer a análise e construir o gráfico desse tipo de função. Teste sua compreensão resolvendo os exercícios.
Gráfico de Inequações do 1º Grau
Representando o gráfico de uma inequação.
Relação
Relação, Conjunto, Relação entre conjuntos, Representação de conjunto, Representação de relação, Regra, Diagrama, Par ordenado, Domínio, Imagem, Gráfico de uma relação.
Áreas de Regiões Curvas
Você sabe o que são áreas de regiões curvas? Clique aqui e entenda!
video icon
Escrito"Matemática do Zero | Princípio fundamental da contagem" em fundo azul.
Matemática do Zero
Matemática do Zero | Princípio fundamental da contagem
Nessa aula veremos o que é o princípio fundamental da contagem. O princípio fundamental da contagem é uma técnica para calcularmos de quantas maneiras decisões podem combinar-se. Se uma decisão pode ser tomada de n maneiras e outra decisão pode ser tomada de m maneiras, o número de maneiras que essas decisões podem ser tomadas simultaneamente é calculado pelo produto de n · m.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Pessoa com as pernas na água
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
video icon
fone de ouvido, bandeira do reino unido e caderno escrito "ingles"
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
video icon
três dedos levantados
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.