Whatsapp icon Whatsapp

Operações matemáticas básicas

Operações matemáticas básicas são as quatro operações que dão base para todas as outras operações da Matemática. São elas a adição, a subtração, a multiplicação e a divisão.
Blocos de madeira com os símbolos das quatro operações matemáticas básicas: adição, subtração, multiplicação e divisão.
As operações básicas da Matemática são a adição, a subtração, a multiplicação e a divisão.

As quatro operações matemáticas básicas são a adição, a subtração, a multiplicação e a divisão, consideradas essenciais para o aprendizado da Matemática. Podemos utilizá-las em diferentes situações cotidianas, desde as mais simples — como a ida a um supermercado, o controle da quantidade de produtos em um estoque, as situações que exigem contagem — até as mais complexas — como os estudos das engenharias, das bolsas de valores, entre outras. Por isso é de grande importância compreender essas quatro operações e todas as suas propriedades.

Leia também: Potenciação — uma operação matemática que se baseia na multiplicação

Resumo sobre as operações matemáticas básicas

  • As operações matemáticas básicas são utilizadas como base da Matemática.
  • São elas: adição, subtração, multiplicação e divisão.
  • A adição e a subtração são conhecidas como operações inversas entre si.
  • A multiplicação e a divisão também são operações inversas entre si.
  • Adição, subtração, multiplicação e divisão são representadas, respectivamente, pelos símbolos +, –, ×, ÷.
  • O resultado da adição é chamado de soma.
  • O resultado da subtração é chamado de diferença.
  • O resultado da multiplicação é chamado de produto.
  • O resultado da divisão é chamado de quociente.

Não pare agora... Tem mais depois da publicidade ;)

Quais são as operações matemáticas básicas?

As operações matemáticas são adição, subtração, multiplicação e divisão. Vejamos, a seguir, cada uma.

→ Adição

A primeira operação básica é a adição. Adicionar diz respeito a: aumentar, acrescentar, juntar, entre outras palavras. Essa operação consiste em somar dois ou mais números e é indicada pelo símbolo + (lê-se: mais) entre eles. Veja o exemplo:

\(2+3=5\)

O exemplo diz que 2 mais 3 é igual a 5. Isso significa que, ao juntarmos 2 unidades com 3 unidades, teremos um total de 5 unidades.

Os números 2 e 3 nesse caso são conhecidos como as parcelas da adição, já o número 5 é a soma. De modo geral, o resultado de uma adição é sempre uma soma, e os números que estamos somando são as parcelas.

Veja mais exemplos de adição:

4 + 7 = 11

32 + 15 = 47

3,2 + 4,7 = 7,9

◦ Propriedades da adição

A adição possui quatro propriedades importantes, são elas: a comutatividade, a associatividade, o elemento neutro e o elemento oposto. Veja sobre cada uma delas a seguir:

Comutatividade: a ordem das parcelas não altera a soma. Exemplo:

\(2+3=5\ \)

\(3+2=5\ \)

Independentemente da ordem das parcelas de uma adição, a soma sempre será a mesma.

Associatividade: ao somarmos três ou mais números, o resultado é o mesmo, independentemente da ordem em que realizamos as somas. Exemplo:

\(\left(2+3\right)+1=2+\left(3+1\right)\)

\(5+1=2+4\ \)

\(6=6\)

Note que, no primeiro membro da igualdade, a soma realizada primeiro foi a de 2 + 3; já no segundo membro, a soma realizada primeiro foi 3 + 1. Perceba que, independentemente dessa ordem, o resultado encontrado foi o mesmo, nesse caso: 6.

Existência do elemento neutro: existe um elemento neutro, que, ao somar-se um número com ele, o resultado será o próprio número. O número 0 é o elemento neutro da adição, pois, quando somamos qualquer número ao 0, encontramos como resultado o próprio número. Exemplo:

5 + 0 = 5 e 0 + 5 = 0

Existência do elemento oposto: o elemento oposto de um número, conhecimento também como simétrico, é o número que, quando somado com o número original, o resultado é 0. Exemplos:

\(2+\left(-2\right)=0\)

\(-4+4=0\ \)

2 e – 2 são elementos opostos, assim como – 4 e 4.

→ Subtração

A segunda operação básica é a da subtração. Subtrair se relaciona a termos como: diminuir, menos, retirar, restar, diferença, perder, entre outros. A subtração é representada pelo símbolo - (lê-se: menos) e é a operação inversa da adição. Veja o exemplo:

\(5-3=2\ \)

O exemplo diz que 5 menos 3 é igual a 2. Na subtração, o valor que ocupa o espaço representado pelo 5 no exemplo é conhecido como minuendo; o valor que ocupa o espaço representado pelo 3 é conhecido como subtraendo; e o resultado da subtração é conhecido como diferença, que, nesse caso, é igual a 2.

A subtração é conhecida como operação inversa da adição. No exemplo 5 – 3, procura-se a diferença entre 5 e 3, e o resultado é 2, e sabemos que 3 + 2 é igual a 5.

De modo geral, temos que:

\(11-8\ \)

Ao representar essa operação, estamos procurando qual número somado a 8 resulta em 11, ou seja, qual a diferença entre 11 e 8, ou quantas unidades a mais o 11 tem em relação ao 8. O resultado é 3 porque sabemos que 8 + 3 = 11, então temos que:

\(11-8=3\)

Veja outros exemplos de subtração:

\(10-4=6\)

\(28-18=10\)

\(3,14-2,11=1,03\)

Importante: As propriedades apresentadas para a adição anteriormente não são válidas para a subtração, ou seja, a subtração não é comutativa nem associativa, não existe elemento neutro nela e não há também existência de oposto.

Veja também: Qual é o algoritmo da subtração?

→ Multiplicação

A terceira operação básica da Matemática é a da multiplicação. A multiplicação é a soma sucessiva de um número por ele mesmo e é representada pelo símbolo × ou  (lê-se: vezes). Veja o exemplo:

\(3\times5=15\)

A operação 2×5 quer dizer que estamos somando o 5 com ele mesmo três vezes, ou seja 5 + 5 + 5. Sabemos que 5 + 5 + 5 = 15, então 3×5 é igual a 15.

Na multiplicação os números multiplicados são conhecidos como fatores e o resultado é conhecido como produto.

Veja outros exemplos:

\(8\times6=48\)

\(2,5\times2=5\)

\(12\times11=132\)

◦ Propriedades da multiplicação

Assim como a adição, a multiplicação tem propriedades importantes, são elas: comutatividade, associatividade, existência de um elemento neutro, existência do elemento inverso. Veja sobre cada uma delas a seguir.

Comutatividade: a ordem dos fatores não altera o produto. Exemplo:

\(2\times3=6\)

\(3\times2=6\)

Na multiplicação, independentemente da ordem dos fatores, o produto será sempre o mesmo.

Associatividade: na multiplicação de três ou mais números, a ordem em que realizamos a operação não altera o produto: Exemplo:

\(\left(2\times4\right)\times5=2\times\left(4\times5\right)\)

\(8\times5=2\times20\ \) 

\(40=40\ \)

Note que, em cada lado, os produtos foram calculados em ordem diferente, ainda assim, o resultado foi o mesmo.

Existência de um elemento neutro: existe um elemento na multiplicação que, ao multiplicarmos qualquer número por ele, o resultado é o próprio número. O elemento neutro da multiplicação é o número 1, pois todo número multiplicado por 1 é igual a ele mesmo. Exemplo:

\(12\times1=12\ \)

\(1\times12=12\)

Existência do inverso: para todo número racional, existe um elemento inverso tal que o produto desse número pelo seu inverso é igual ao elemento neutro da multiplicação: 1. Exemplos:

\(2\times\frac{1}{2}=1\)

\(-\frac{1}{3}\times\left(-3\right)=1\)

Então sabemos que 2 e \( \frac{1}{2}\) são inversos e que \(-\frac{1}{3}\)\(-3\) são inversos.

→ Divisão

A última das operações básicas é a da divisão. Dividir consiste em: repartir, racionar, fragmentar. A divisão é representada pelo símbolo ÷ ou : (lê-se: dividido por) e é a operação inversa da multiplicação. Veja o exemplo:

10 ÷ 2 = 5

O exemplo diz que 10 dividido por 2 é igual a 5. Na divisão o número dividido é conhecido como dividendo, no exemplo, é o número 10. O número que divide o dividendo é conhecido como divisor, no exemplo, é o número 2. O resultado da divisão é conhecido como quociente.

A divisão é a operação inversa da multiplicação, porque, para encontrar qual é o resultado da divisão de 10 por 2, recorremos à multiplicação. Buscando saber qual é o número que, multiplicado por 2, tem como resultado 10, acha-se o 5, então como 5 ×2 = 10, o resultado de 10÷2=5.

Veja outros exemplos de divisão:

18 ÷ 9 = 2

30 ÷ 6 = 5

1,21 ÷ 1,1=1,1

Acesse também: Qual é o algoritmo da divisão?

Exercícios resolvidos sobre as operações matemáticas básicas

Questão 1

O salário da Kárita na sua empresa é igual a um valor fixo de R$ 500 mais uma comissão de R$ 25 a cada cliente que ela conseguir levar até a empresa. Se em determinado mês ela conseguiu convidar 64 clientes para a loja, o seu salário foi de:

A) R$ 1600

B) R$ 1900

C) R$ 2000

D) R$ 2100

E) R$ 2200

Resolução:

Alternativa D

Calculando o salário de Kárita, temos que:

64 ⋅ 25 + 500 = 1600 + 500 = 2100

Questão 2

Durante a pandemia de covid-19, para atender aos protocolos de segurança, uma escola comprou 12 dispensers de álcool em gel, de 800 ml cada. Sabendo que foram comprados 134.400 ml de álcool em gel, e que, a cada semana, é necessário preencher os 12 dispensers, então o número de semanas que o álcool em gel comprado durará é de:

A) 7 semanas

B) 14 semanas

C) 21 semanas

D) 54 semanas

E) 167 semanas

Resolução:

Alternativa B

Calculando, temos que:

134400 : 800 = 168

É possível encher 168 dispensers. Como temos 12 preenchidos semanalmente, então temos que:

168 : 12 = 14

Logo, o álcool em gel comprado durará 14 semanas.

Publicado por Raul Rodrigues de Oliveira

Artigos Relacionados

Adição
Conheça a operação matemática chamada adição. Aprenda a calcular a soma entre os números. Utilize o algoritmo de adição para encontrar a soma entre os números.
Multiplicação
Aprenda a realizar a multiplicação entre dois números utilizando o algoritmo dessa operação, bem como entenda o jogo de sinais.
Operações com números inteiros
Clique aqui, saiba quais são as operações com números inteiros e veja exemplos.
Subtração
Conheça a operação matemática chamada subtração. Aprenda a calcular a diferença entre dois números. Entenda o algoritmo da subtração.
video icon
Escrito"Cigarro eletrônico faz mal mesmo?" sobre a fumaça presente em uma ilustração de cigarro eletrônico.
Química
Cigarro eletrônico, faz mal assim mesmo?
Dispositivos amplamente difundidos hoje e sem relatos concretos sobre os seus malefícios são os cigarros eletrônicos. Por mais que não saibamos de maneira clara o quão fazem mal a saúde é claro e evidente que não fazem bem! Vamos entender o seu funcionamento e desvendar o motivo pelo qual com certeza ele fazem mal a saúde.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Pessoa com as pernas na água
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
video icon
fone de ouvido, bandeira do reino unido e caderno escrito "ingles"
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
video icon
três dedos levantados
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.