Você está aqui
  1. Mundo Educação
  2. Física
  3. Magnetismo
  4. As Equações de Maxwell

As Equações de Maxwell

Baseando-se nos estudos de Michael Faraday, Maxwell unificou, em 1864, todos os fenômenos elétricos e magnéticos observáveis em um trabalho que estabeleceu conexões entre as várias teorias da época, derivando uma das mais elegantes teorias já formuladas.

Maxwell demonstrou, com essa nova teoria, que todos os fenômenos elétricos e magnéticos poderiam ser descritos em apenas quatro equações, conhecidas atualmente como Equações de Maxwell.
Essas são as equações básicas para o eletromagnetismo, assim como a lei da gravitação universal e as três leis de Newton são fundamentais para a Mecânica Clássica.
Não serão apresentadas nesse artigo as deduções matemáticas das equações de Maxwell, uma vez que essas necessitam do conhecimento do Cálculo Diferencial e Integral, que somente é estudado na íntegra em cursos superiores.

As equações de Maxwell para o eletromagnetismo constam da unificação entre as Leis de Gauss, para a eletricidade e para o magnetismo, a Lei de Ampère generalizada e a Lei de Faraday para a Indução eletromagnética.

Segue então as equações de Maxwell:

1) Lei de Gauss para a eletricidade:

Essa é a primeira das quatro equações de Maxwell, proposta originalmente pelo matemático alemão Carl Friedrich Gauss (1777-1855), é o equivalente à lei de Coulomb em situações estáticas. Ela relaciona os campos elétricos e suas fontes, as cargas elétricas, e pode ser aplicada mesmo para campos elétricos variáveis com o tempo.

2) Lei de Gauss para o magnetismo:

Esta lei é equivalente à primeira, mas aplicável aos campos magnéticos e evidenciando ainda a não existência de monopolos magnéticos (não existe polo sul ou polo norte isolado). De acordo com essa lei, as linhas de campo magnético são contínuas, ao contrário das linhas de força de um campo elétrico que se originam em cargas elétricas positivas e terminam em cargas elétricas negativas.

3) Lei de Ampère:

A lei de Ampère descreve a relação entre um campo magnético e a corrente elétrica que o origina. Ela estabelece que um campo magnético é sempre produzido por uma corrente elétrica ou por um campo elétrico variável. Essa segunda maneira de se obter um campo magnético foi prevista pelo próprio Maxwell, com base na simetria de natureza: se um campo magnético variável induz uma corrente elétrica, e consequentemente um campo elétrico, então um campo elétrico variável deve induzir um campo magnético.


4) Lei de Faraday:

A quarta das equações de Maxwell descreve as características do campo elétrico originando um fluxo magnético variável. Os campos magnéticos originados são variáveis no tempo, gerando assim campos elétricos do tipo rotacionais.

Até o final do século XIX, acreditava-se que com estas equações não havia mais nada para ser descoberto na física. Porém, em 1900, Max Planck deu inicio à chamada Física quântica, com seus postulados sobre a radiação de corpo negro.

Em 1905, Albert Einstein revoluciona de uma vez por todas os conhecimentos da ciência, lançando a Teoria da Relatividade e o Efeito Fotoelétrico, abrindo caminho para o maior desenvolvimento científico da história.
As equações de Maxwell são consideradas o marco final do que chamamos de Mecânica Clássica.
Maxwell foi o primeiro físico a encontrar através de cálculos matemáticos a velocidade das ondas eletromagnéticas, tudo graças às suas famosas equações.

Não pare agora... Tem mais depois da publicidade ;)
James Clerk Maxwell
James Clerk Maxwell
Publicado por: Marina Cabral
Assuntos relacionados
As ondas eletromagnéticas são usadas na telecomunicação para emitir os sinais de TV e rádio
Ondas eletromagnéticas
Clique aqui e entenda o que são as ondas eletromagnéticas, aplicadas no cotidiano em celulares e na transmissão via satélite.
Jean Baptiste Biot e Félix Savart são os dois precursores do cálculo do campo magnético em um fio.
Enunciando a Lei de Biot-Savart
Através do experimento de Oersted surgiu a lei de Biot-Savart.
Fios que conduzem corrente elétrica podem ser atraídos ou repelidos. Isso depende do sentido da corrente elétrica
Força magnética entre fios paralelos
Você sabia que um fio pode atrair outro fio? Clique aqui e entenda a força magnética entre fios paralelos que conduzem corrente elétrica.
Ampère formulou a Lei de Ampère que determina o campo magnético ao redor de um fio percorrido por uma corrente elétrica
Lei de Ampère
Veja aqui a definição da Lei de Ampère e veja também como ela estabelece, matematicamente, o campo magnético ao redor de um condutor.
A maior contribuição para a Física de Richard Feynman foi o desenvolvimento da Eletrodinâmica Quântica *
Richard Feynman
Clique aqui e conheça um pouco da vida de Richard Feynman, físico estadunidense que descobriu o motivo da explosão da nave Challenger em 1986.
Ímã em forma de ferradura
Campo magnético
Acesse e aprenda a definição de campo magnético. Descubra quais são as diferentes fontes de campo magnético, e confira exercícios resolvidos sobre o tema.
Materiais Ferromagnéticos
Saiba como é possível produzir campos magnéticos com maiores intensidades.
O comboio de trens Maglev se baseia nos princípios da levitação magnética
Levitação magnética e Efeito Meissner
As características básicas da levitação magnética e do efeito Meissner.
Para uma carga lançada perpendicularmente às linhas de campo, a força magnética atua como a força centrípeta
Raio da trajetória de uma carga no campo magnético
Veja como é possível determinar o valor do raio da trajetória descrita por uma carga lançada perpendicularmente a um campo magnético uniforme.