Conjunto dos Naturais
Pertencem ao conjunto dos naturais os números inteiros positivos incluindo o zero. Representado pela letra N maiúscula. Os elementos dos conjuntos devem estar sempre entre chaves.
N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ... }
♦ Quando for representar o Conjunto dos Naturais não – nulos (excluindo o zero) devemos colocar * ao lado do N.
Representado assim:
N* = {1, 2,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12, ... }
A reticência indica que sempre é possível acrescentar mais um elemento.
N = {0, 1, 2, 3, 4, 5, 6, ...} ou N = {0, 1, 2, 3, 4, 5, 6, 7, ... }
Qualquer que seja o elemento de N, ele sempre tem um sucessor. Também falamos em antecessor de um número.
• 6 é o sucessor de 5.
• 7 é o sucessor de 6.
• 19 é antecessor de 20.
• 47 é o antecessor de 48.
Como todo número natural tem um sucessor, dizemos que o conjunto N é infinito.
Quando um conjunto é finito?
O conjunto dos números naturais maiores que 5 é infinito: {6, 7, 8, 9, ...}
Já o conjunto dos números naturais menores que 5 é finito: {0, 1, 2, 3, 4}
Veja mais alguns exemplos de conjuntos finitos.
• O conjunto dos alunos da classe.
• O conjunto dos professores da escola.
• O conjunto das pessoas que formam a população brasileira.
N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ... }
♦ Quando for representar o Conjunto dos Naturais não – nulos (excluindo o zero) devemos colocar * ao lado do N.
Representado assim:
N* = {1, 2,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12, ... }
A reticência indica que sempre é possível acrescentar mais um elemento.
N = {0, 1, 2, 3, 4, 5, 6, ...} ou N = {0, 1, 2, 3, 4, 5, 6, 7, ... }
Qualquer que seja o elemento de N, ele sempre tem um sucessor. Também falamos em antecessor de um número.
• 6 é o sucessor de 5.
• 7 é o sucessor de 6.
• 19 é antecessor de 20.
• 47 é o antecessor de 48.
Como todo número natural tem um sucessor, dizemos que o conjunto N é infinito.
Quando um conjunto é finito?
O conjunto dos números naturais maiores que 5 é infinito: {6, 7, 8, 9, ...}
Já o conjunto dos números naturais menores que 5 é finito: {0, 1, 2, 3, 4}
Veja mais alguns exemplos de conjuntos finitos.
• O conjunto dos alunos da classe.
• O conjunto dos professores da escola.
• O conjunto das pessoas que formam a população brasileira.
Publicado por Danielle de Miranda
Ferramentas Brasil Escola
Cronograma de estudos
Jornada do Enem

Corrige Aqui

Tire Dúvidas
Calculadora SISU
Calculadora PROUNI
Jogo das Capitais
Palpites
Simulados Enem
Simulados Vestibulares
Cronograma de estudos
Jornada do Enem

Corrige Aqui

Tire Dúvidas
Assista às nossas videoaulas

Artigos Relacionados
Comparando Valores
Razão e proporção entre valores.
Expressões numéricas
Aprenda a resolver expressões numéricas clicando aqui! Saiba qual a maneira correta para se resolver uma expressão respeitando a ordem das operações e dos símbolos.
Múltiplos e divisores
Entenda o que significa dizer que um número é múltiplo ou divisor de outro. Veja aqui as respostas para essas perguntas e as implicações dessas definições.
Raiz Quadrada de Números Fracionários
Utilizando a fatoração na determinação da raiz quadrada.

Banco de Redações
Principais desvios de norma-padrão nas redações
Na aula de hoje, vamos abordar alguns dos principais desvios relativos à norma-padrão encontrados nas redações, juntamente com algumas dicas para evitá-los.
Últimas notícias
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos

Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!

Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?

Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.