Forma Trigonométrica ou Polar de um Número Complexo
Considere z = a + bi ≠ 0 a forma normal ou algébrica de um número complexo. Sabemos que o argumento de z satisfaz as seguintes condições:
Observação: ρ é o módulo de z.
Substituindo os valores determinados acima na forma algébrica de z, obtemos:
z = a + bi
Colocando ρ em evidência, ficamos com:
A forma trigonométrica é muito útil e prática nas operações de potenciação e radiciação em C.
Exemplo: Escreva os seguintes números complexos na forma trigonométrica:
a) √3+i
Solução: Temos que
Segue que:
Assim, a forma trigonométrica é:
Não pare agora... Tem mais depois da publicidade ;)
b) 3i
Solução: Temos que
Publicado por Marcelo Rigonatto
Artigos Relacionados
Aplicação dos Números Complexos
Resolvendo equações do 2º grau no conjunto dos números complexos.
Multiplicação de Números Complexos
Forma multiplicativa dos números complexos.
Plano de Argand-Gauss (plano complexo)
Saiba o que é o plano de Argand-Gauss, aprenda a representar números complexos no plano, calcule o módulo e argumento de um número complexo.

Sociologia
Futebol e Política
Como futebol e política se relacionam? Como, ao longo do tempo, essas duas paixões se entrelaçaram? Não perca esta videoaula.
Últimas notícias
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos

Biologia
Transgênicos
Você sabe o que são alimentos transgênicos? Não se engane, eles estão mais presentes do que você imagina!

Química
Alotropia
Não deixe de assistir nossa aula para fixar tudo o que você estudou sobre alotropia!

Filosofia
Batman
Que tal assistir ao vídeo para uma análise ética sobre o herói?