Inequação – produto
Inequação é uma desigualdade de elementos, portanto uma inequação - produto pode ser representada da seguinte forma:
h(x) . w(x) > 0
h(x) . w(x) < 0
h(x) . w(x) ≠ 0
h(x) . w(x) ≥ 0
h(x) . w(x) ≤ 0
Sendo que h e w estão representando qualquer função (elemento). Por exemplo:
Qual seriam os possíveis valores de x para que o produto das funções h(x) = (3x + 6) e w(x) = (2x – 1) seja negativo?
É possível resolver de várias formas diferentes, dentre elas podemos destacar as seguintes:
• Para que esse produto seja negativo ele deverá ser menor que zero, portanto iremos representá-lo da seguinte forma: (3x + 6) . (2x – 1) < 0. Podemos estudar o sinal de cada uma das funções e em seguida estudar o sinal da inequação, assim serão encontrados os possíveis valores de x que satisfazem a desigualdade.
(3x + 6) . (2x – 1) < 0
h(x) = (3x + 6)
3x + 6 = 0
3x = -6
x = -2
.jpg)
w(x) = (2x – 1)
2x – 1 = 0
2x = 1
x = 1/2

Agora montamos a seguinte tabela que possibilitará encontrar os valores de x:

Portanto, teremos como solução da inequação: S = {x R / -2 < x < 1/2}
• Outra forma de encontrar o valor dessa mesma inequação – produto é transformá-la em uma inequação de 2º grau. Veja como isso acontece:
(3x + 6) . (2x – 1) < 0
6x2 – 3x + 12x – 6 < 0
6x2 + 9x – 6 < 0 → inequação do segundo grau.
Igualamos a expressão algébrica a zero e encontramos os possíveis valores de x:
6x2 + 9x – 6 = 0
Δ = 25
x’ = 1/2
x’’ = -2
Com esses valores estudamos o sinal da inequação, dessa forma encontramos a solução da inequação – produto.

S = {x R / -2 < x < 1/2}
h(x) . w(x) > 0
h(x) . w(x) < 0
h(x) . w(x) ≠ 0
h(x) . w(x) ≥ 0
h(x) . w(x) ≤ 0
Sendo que h e w estão representando qualquer função (elemento). Por exemplo:
Qual seriam os possíveis valores de x para que o produto das funções h(x) = (3x + 6) e w(x) = (2x – 1) seja negativo?
É possível resolver de várias formas diferentes, dentre elas podemos destacar as seguintes:
• Para que esse produto seja negativo ele deverá ser menor que zero, portanto iremos representá-lo da seguinte forma: (3x + 6) . (2x – 1) < 0. Podemos estudar o sinal de cada uma das funções e em seguida estudar o sinal da inequação, assim serão encontrados os possíveis valores de x que satisfazem a desigualdade.
(3x + 6) . (2x – 1) < 0
h(x) = (3x + 6)
3x + 6 = 0
3x = -6
x = -2
.jpg)
w(x) = (2x – 1)
2x – 1 = 0
2x = 1
x = 1/2

Agora montamos a seguinte tabela que possibilitará encontrar os valores de x:

Portanto, teremos como solução da inequação: S = {x R / -2 < x < 1/2}
• Outra forma de encontrar o valor dessa mesma inequação – produto é transformá-la em uma inequação de 2º grau. Veja como isso acontece:
(3x + 6) . (2x – 1) < 0
6x2 – 3x + 12x – 6 < 0
6x2 + 9x – 6 < 0 → inequação do segundo grau.
Igualamos a expressão algébrica a zero e encontramos os possíveis valores de x:
6x2 + 9x – 6 = 0
Δ = 25
x’ = 1/2
x’’ = -2
Com esses valores estudamos o sinal da inequação, dessa forma encontramos a solução da inequação – produto.

S = {x R / -2 < x < 1/2}
Publicado por Danielle de Miranda
Artigos Relacionados
Analisando Situações Através de Funções do 1º Grau
Aplicações de uma Função do 1º grau.

Função logarítmica
Conheça a definição da função logarítmica, aprenda a construir seu gráfico e a identificar se ele será crescente ou decrescente. Resolva os exercícios sobre o tema.
Gráfico de Inequações do 1º Grau
Representando o gráfico de uma inequação.

Inequação exponencial
Entenda o que é uma inequação exponencial. Aprenda como resolver uma inequação exponencial. Encontre o conjunto de soluções de uma inequação exponencial.

Propriedades da desigualdade nas inequações
Aprenda as propriedades da desigualdade nas inequações que, juntamente à análise dos resultados, é a maior diferença entre elas e as equações.
Relação
Relação, Conjunto, Relação entre conjuntos, Representação de conjunto, Representação de relação, Regra, Diagrama, Par ordenado, Domínio, Imagem, Gráfico de uma relação.
Sinal da Função do 2º Grau
Estudando o sinal de uma função do 2º grau.

Português
Pré-Enem | Funções da linguagem
O Pré-Enem é o intensivo preparatório do Brasil Escola para o Enem. Nele nós separamos os principais temas que devem ser estudados a menos de três meses do exame. Nesta transmissão você assistirá à aula sobre "Funções da linguagem" com a professora Maria Beatriz!
Últimas notícias
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos

Matemática
Área da esfera
Clique para aprender a calcular a área da esfera.

Inglês
Estrangeirismo
Nessa videoaula você entende sobre o estrangeirismo na música "Samba do Approach."

História
Crise de 1929
A quebra da bolsa de valores de Nova Iorque afetou não só os EUA, como o mundo. Entenda!