Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Função
  4. Limite de uma Função

Limite de uma Função

Na matemática, o limite tem o objetivo de determinar o comportamento de uma função à medida que ela se aproxima de alguns valores, sempre relacionando os pontos x e y. Utilizando a função y = x + 1, vamos determinar os valores de y à medida que x assume alguns valores. Veja:

 

Note que à medida que x se aproxima de –2, o valor de y se aproxima de –1, isto é, quando x tende a –2 (x → –2), y tende a –1 (y → –1). Portanto:

x → –1, y → 0
x → 1, y → 2
x → 2, y → 3

A utilização de limites ajuda na compreensão de diversas situações envolvendo funções, através de pontos notáveis como mínimo e máximo ou até mesmo os pontos de intersecção entre funções, a continuidade de funções também utiliza as noções de limites, bem como os problemas envolvendo séries numéricas convergentes ou divergentes.

Vamos trabalhar a função f(x) = x², mostrando que à medida que os valores de x aproximam de 3, pela esquerda ou pela direita, a função se aproxima do valor 9.

Pela direita

f(3,1) = (3,1)² = 9,61
f(3,01) = (3,01)² = 9,06
f(3,001) = (3,001)² = 9,006001
f(3,0001) = (3,0001)² = 9,00060001


Pela esquerda

f(2,9) = (2,9)² = 8,41
f(2,99) = (2,99)² = 8,9401
f(2,999) = (2,999)² = 8,994001
f(2,9999) = (2,9999)² = 8,99940001




Observe que à medida que os valores se aproximam de 3, tanto pela direita quanto pela esquerda, a imagem da função f(x) = x², fica mais próxima do valor 8.



Exemplo 1

Dada a função f(x) = 4x + 1, determine a sua imagem à medida que o valor de x tende a 2.

Não pare agora... Tem mais depois da publicidade ;)



f(x) = 4x + 1 f(2) = 4 * 2 + 1 f(2) = 9


Exemplo 2

Vamos determinar o limite da função f(x) = x² – 5x + 3, quando x tende a 4.

Nesse caso devemos aplicar a seguinte regra: o limite das somas é a soma dos limites. Portanto, devemos determinar o limite de cada monômio e depois realizar a soma entre eles.




Exemplo 3
Calcular o limite da função , quando x tende a –2.


Exemplo 4

Determine o limite da função , à medida que x se aproxima de 1.

Publicado por: Marcos Noé Pedro da Silva
Assuntos relacionados
Áreas de Regiões Curvas
Você sabe o que são áreas de regiões curvas? Clique aqui e entenda!
Máximo e mínimo absolutos da função quadrática
Como determinar o ponto de máximo ou mínimo de uma função do 2º grau
Ilustração da reta tangente, que pode ser encontrada por meio do cálculo de derivadas
Regras de derivação
Clique para aprender as regras de derivação utilizadas para facilitar o cálculo da inclinação da reta tangente!
Leitura de números decimais
fração, números decimais, leitura de números decimais, como é feita a leitura de números decimais, décimos, centésimos, milésimos, parte inteira de uma fração.
Variáveis e Funções
Estudo das funções.
Pontos Notáveis da Parábola
Determinando o vértice da parábola.