As bissetrizes dos quadrantes
Bissetriz de um quadrante é uma reta com extremidade no ponto (0,0) que divide o ângulo dos quadrantes pares e ímpares em dois ângulos congruentes.
• Bissetrizes dos quadrantes ímpares.
A bissetriz dos quadrantes ímpares (I e III) divide-os em dois ângulos congruentes, cada um medindo 45°. Dessa forma, essa reta (bissetriz) terá ponto (0,0), inclinação da reta igual a 45° e coeficiente angular igual a m = tg45° = 1.
Aplicando a regra da equação fundamental, iremos concluir que:
y – y0 = m (x – x0)
y – 0 = 1 (x – 0)
y = x
A equação da bissetriz dos quadrantes ímpares será sempre representada por y = x, pois todos os valores do eixo Ox serão iguais aos do eixo Oy. Veja alguns dos possíveis pontos pertencentes à bissetriz dos quadrantes ímpares: (1,1), (-4,-4), (1/2,1/2). Genericamante podemos dizer que os pontos serão iguais a (x,x).
• Bissetriz dos quadrantes pares
A bissetriz dos quadrantes pares (II e IV) divide-os em dois ângulos congruentes, cada um medindo 45°. Dessa forma, essa reta (bissetriz) terá ponto (0,0), inclinação da reta igual a 135° e coeficiente angular igual a m = tg135º= -1.
Aplicando a regra da equação fundamental iremos concluir que:
y – y0 = m (x – x0)
y – 0 = -1 (x – 0)
y = -x
A equação da bissetriz dos quadrantes pares será sempre representada por y = -x, pois todos os valores do eixo Oy serão opostos aos do eixo Ox. Veja alguns dos possíveis pontos pertencentes à bissetriz dos quadrantes pares: (1,-1), (-4,+4), (1/2,-1/2). Genericamante podemos dizer que os pontos serão iguais a (x,-x).
• Bissetrizes dos quadrantes ímpares.
A bissetriz dos quadrantes ímpares (I e III) divide-os em dois ângulos congruentes, cada um medindo 45°. Dessa forma, essa reta (bissetriz) terá ponto (0,0), inclinação da reta igual a 45° e coeficiente angular igual a m = tg45° = 1.
Aplicando a regra da equação fundamental, iremos concluir que:
y – y0 = m (x – x0)
y – 0 = 1 (x – 0)
y = x
A equação da bissetriz dos quadrantes ímpares será sempre representada por y = x, pois todos os valores do eixo Ox serão iguais aos do eixo Oy. Veja alguns dos possíveis pontos pertencentes à bissetriz dos quadrantes ímpares: (1,1), (-4,-4), (1/2,1/2). Genericamante podemos dizer que os pontos serão iguais a (x,x).
• Bissetriz dos quadrantes pares
A bissetriz dos quadrantes pares (II e IV) divide-os em dois ângulos congruentes, cada um medindo 45°. Dessa forma, essa reta (bissetriz) terá ponto (0,0), inclinação da reta igual a 135° e coeficiente angular igual a m = tg135º= -1.
Aplicando a regra da equação fundamental iremos concluir que:
y – y0 = m (x – x0)
y – 0 = -1 (x – 0)
y = -x
A equação da bissetriz dos quadrantes pares será sempre representada por y = -x, pois todos os valores do eixo Oy serão opostos aos do eixo Ox. Veja alguns dos possíveis pontos pertencentes à bissetriz dos quadrantes pares: (1,-1), (-4,+4), (1/2,-1/2). Genericamante podemos dizer que os pontos serão iguais a (x,-x).
Publicado por Danielle de Miranda
Artigos Relacionados
Condição de Alinhamento de Três Pontos
Verificando a condição de alinhamento de três pontos.
Inclinação e coeficiente angular de uma reta
ângulo, reta, condição de existência da reta, pontos, plano cartesiano, tangente, inclinação da reta, como encontrar a inclinação da reta, coeficiente angular, tangente do ângulo
Geografia
O que são brisas?
Assista à videoaula e entenda o que são as brisas. Conheça também os tipos mais comuns de brisas e seus mecanismos.
Últimas notícias
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos
Biologia Evolutiva
Neodarwinismo
Essa teoria explica os processos evolutivos propostos na teoria da evolução de Darwin.
Febre
Se caracteriza por ser uma elevação da temperatura do corpo a níveis superiores que os normais, saiba mais.
Ciclo de Krebs
O ciclo de Krebs, é uma das etapas do processo de respiração celular.
Álgebra
A álgebra é a área da Matemática que estuda as operações com variáveis.
Proporção áurea
A proporção áurea é um conceito matemático que representa uma relação estética e harmônica que é considerada visualmente agradável.
Primeira fórmula de Moivre
A primeira fórmula de Moivre é usada para calcular potências de números complexos na forma polar ou trigonométrica.
População
Demografia
A demografia é uma ciência que realiza diversos estudos populacionais.
Geopolítica
Nova Ordem Mundial
Período geopolítico vivenciado pela sociedade planetária após o fim da Guerra Fria.
Tipos de indústria
Conheça alguns tipos de indústria de base.
Fontes de energia
Energia das Marés
Entenda como a força gravitacional do Sol e da Lua interferem nas marés.
Mecânica
Plano inclinado com atrito
Decompor as forças é uma das etapas para cálculos que envolvem o plano inclinado com atrito.
Ondulatória
Função de onda
Ao estudarmos as ondas vimos que elas têm origem em meios elásticos, como em cordas, na superfície da água, do ar, entenda.
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.