Definição de módulo de um número real
Podemos dizer que módulo é o mesmo que distância de um número real ao número zero, pois o módulo de número real surgiu da necessidade de medir a distância de um número negativo ao zero.
Ao medirmos a distância de um número negativo qualquer ao zero percebe-se que a distância fica negativa e como não é usual dizer que uma distância ou comprimento é negativo foi criado o módulo de número real que torna o valor positivo ou nulo.
Assim, podemos dizer que o módulo de um número real irá seguir duas opções:
• O módulo ou valor absoluto de um número real é o próprio número, se ele for positivo.
• O módulo ou valor absoluto de um número real será o seu simétrico, se ele for negativo.
A representação de um módulo ou valor absoluto de um número real é feito por duas barras paralelas.
Veja o resumo da definição de módulo de um número real abaixo:
|x| = x, se x ≥ 0
-x, se x < 0
Veja alguns exemplos de como calcular módulo ou valor absoluto de números reais.
• |+4| = 4
• |-3| = - (-3) = 3
• |10 – 6 | = |+4| = 4
• |-1 – 3| = |-4| = - (-4) = 4
• |-1| + |5| - |6| = -(-1) + 5 – 6 = 1 + 5 - 6 = 6 – 6 = 0
• - | -8| = -[-(-8)] = - 8
Veja alguns exemplos de como encontrar o módulo de valores desconhecidos.
• |x + 2| nesse caso teremos duas opções, pois não sabemos o valor da incógnita x. Assim, seguimos a definição:
x + 2, se x + 2 ≥ 0, ou seja, x ≥ -2
- (x + 2), se x + 2 < 0, ou seja, x < -2
• |2x – 10|
2x – 10, se 2x – 10 ≥ 0, ou seja, 2x ≥ 10 → x ≥ 5
-(2x – 10), se 2x – 10 < 0, ou seja, 2x < 10 → x < 5
• |x2 – 9|
x 2 – 9, se x2 – 9 ≥ 0
x 2 – 9 ≥ 0
x 2 ≥ 9
x ≥ 3 ou x ≤ -3
- (x 2 – 9) , se x2 – 9 < 0
x2 – 9 < 0
x2 < 9
-3 < x < 3
Concluímos que o módulo de um número real é sempre positivo ou nulo.
Ao medirmos a distância de um número negativo qualquer ao zero percebe-se que a distância fica negativa e como não é usual dizer que uma distância ou comprimento é negativo foi criado o módulo de número real que torna o valor positivo ou nulo.
Assim, podemos dizer que o módulo de um número real irá seguir duas opções:
• O módulo ou valor absoluto de um número real é o próprio número, se ele for positivo.
• O módulo ou valor absoluto de um número real será o seu simétrico, se ele for negativo.
A representação de um módulo ou valor absoluto de um número real é feito por duas barras paralelas.
Veja o resumo da definição de módulo de um número real abaixo:
|x| = x, se x ≥ 0
-x, se x < 0
Veja alguns exemplos de como calcular módulo ou valor absoluto de números reais.
• |+4| = 4
• |-3| = - (-3) = 3
• |10 – 6 | = |+4| = 4
• |-1 – 3| = |-4| = - (-4) = 4
• |-1| + |5| - |6| = -(-1) + 5 – 6 = 1 + 5 - 6 = 6 – 6 = 0
• - | -8| = -[-(-8)] = - 8
Veja alguns exemplos de como encontrar o módulo de valores desconhecidos.
• |x + 2| nesse caso teremos duas opções, pois não sabemos o valor da incógnita x. Assim, seguimos a definição:
x + 2, se x + 2 ≥ 0, ou seja, x ≥ -2
- (x + 2), se x + 2 < 0, ou seja, x < -2
• |2x – 10|
2x – 10, se 2x – 10 ≥ 0, ou seja, 2x ≥ 10 → x ≥ 5
-(2x – 10), se 2x – 10 < 0, ou seja, 2x < 10 → x < 5
• |x2 – 9|
x 2 – 9, se x2 – 9 ≥ 0
x 2 – 9 ≥ 0
x 2 ≥ 9
x ≥ 3 ou x ≤ -3
- (x 2 – 9) , se x2 – 9 < 0
x2 – 9 < 0
x2 < 9
-3 < x < 3
Concluímos que o módulo de um número real é sempre positivo ou nulo.
Publicado por Danielle de Miranda
Artigos Relacionados
Consumo de Energia Elétrica
Saiba como calcular o consumo médio de energia elétrica de sua casa.
Equação do 2º grau
Aprenda a resolver uma equação do 2º grau e a diferenciar uma equação do 2º grau completa de uma incompleta. Confira ainda exercícios sobre o tema.
Equações Matemáticas na Termologia
Fórmulas matemáticas na conversão de temperaturas.
Expressões algébricas
Aprenda o que é uma expressão algébrica e como fatorá-la. Conheça também o que é um monômio e o que é um polinômio.
Inequação
Entenda o que é uma inequação. Aprenda a encontrar o conjunto de soluções de uma inequação. Conheça os tipos de inequações. Resolva inequações do 1º e do 2º grau.
Raízes ou zero da função do 2º Grau
Determinando as condições de existência de uma Parábola.
História
Grécia Antiga: Civilização Micênica
Assista à nossa videoaula para conhecer a história da civilização micênica. Confira também, no nosso canal, outras informações sobre a Grécia Antiga.
Últimas notícias
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos
Teorias evolucionistas
As teorias apresentam como ponto principal a defesa de que os organismos do planeta sofrem modificações ao longo do tempo.
Osmose
Osmose é um processo de movimentação da água através de uma membrana semipermeável.
Coluna vertebral
Estrutura que forma o eixo do corpo, garante a sustentação e a movimentação do corpo.
Operações matemáticas básicas
São elas a adição, a subtração, a multiplicação e a divisão.
Números
Os números são utilizados para representar quantidades, ordem e medidas.
Inflação
O aumento acentuado dos preços é uma característica da inflação.
O que são big techs?
Big techs são grandes empresas de tecnologia que dominam o cenário global de produção de informações.
Patrimônio cultural
Os patrimônios culturais, são importantes registros materiais ou imateriais da história de um povo.
Quilombolas
Quilombolas são membros remanescentes das comunidades chamadas quilombos.
Fontes de energia
Energia das Marés
Entenda como a força gravitacional do Sol e da Lua interferem nas marés.
Mecânica
Plano inclinado com atrito
Decompor as forças é uma das etapas para cálculos que envolvem o plano inclinado com atrito.
Ondulatória
Função de onda
Ao estudarmos as ondas vimos que elas têm origem em meios elásticos, como em cordas, na superfície da água, do ar, entenda.
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.