Whatsapp icon Whatsapp

Inequação

A inequação é uma expressão matemática que possui variável e um sinal de desigualdade entre os seus termos. Os sinais de desigualdade são:

  • menor que (<)

  • maior que (>)

  • menor ou igual (≤)

  • maior ou igual (≥)

As inequações mais comuns são as do 1º grau e do grau. Para cada uma delas, utilizamos um método de resolução. A fim de encontrar a solução de uma inequação, utilizamos técnicas parecidas com as utilizadas para encontrar soluções das equações, mas é necessário tomar alguns cuidados, por se tratar de uma desigualdade e não de uma igualdade. A diferença entre inequação e equação é que, nesta, há uma igualdade, e, naquela, uma desigualdade.

Leia também: Quais são as diferenças entre função e equação?

O que é inequação?

Símbolos de desigualdade.
Símbolos de desigualdade.

A inequação é uma expressão algébrica que possui um sinal de desigualdade entre os seus termos.

Exemplos:

  • 2x – 5 > 4

  • x² + 2x + 2 ≤ -1

  • 5x + 1 ≥ 4x – 3

  • x² – 4x < 0

Resolver inequações é encontrar o conjunto de soluções que faz com que a desigualdade seja verdadeira. Diferentemente de uma equação do 1º grau, por exemplo, que possui somente uma solução, a inequação do 1º grau pode ter infinitas soluções. Por isso, encontramos um conjunto de soluções e não apenas uma solução.

Não pare agora... Tem mais depois da publicidade ;)

Símbolos da inequação

Os símbolos que aparecem na expressão algébrica e fazem com que ela seja conhecida como uma inequação são os símbolos de desigualdade:

  • < → menor que

  • ≤ → menor ou igual

  • > → maior que

  • ≥ → maior ou igual

Veja também: Propriedades da desigualdade nas inequações

Tipos de inequação

Existem dois tipos principais de inequação, o que define o tipo de inequação e o que define o tipo de expressão algébrica que estamos resolvendo. Quando há um polinômio de grau 1, temos uma inequação do 1º grau, e quando há um polinômio de grau 2, temos uma inequação do 2º grau.

  • Inequação do 1º grau

As inequações do grau são basicamente divididas nos casos a seguir:

  • ax + b > 0

  • ax + b ≥ 0

  • ax + b < 0

  • ax + b ≤ 0

  • Como resolver uma inequação do 1º grau

Em todos esses casos, o método de resolução é sempre o mesmo. Para encontrarmos o conjunto de soluções da inequação, isolaremos a variável.

Exemplo:

Encontre o conjunto de soluções da inequação 2x – 10 < 4.

Para encontrar a solução da inequação, vamos isolar a variável:

2x – 10 < 4
2x < 4 + 10
2x < 14
x < 14/2
x < 7

Perceba que a solução para essa inequação é qualquer valor que seja menor que 7.

S: {x∈ R | x < 7} (Lê-se: x pertence ao conjunto dos números reais, tal que x é menor que sete.)

Essa solução pode ser mostrada de forma geométrica:

Exemplo 2:

Encontre o conjunto de soluções da inequação 5x – 9 ≤ 8x + 2.

Para encontrar a solução da inequação, vamos isolar a variável:

5x – 9 ≤ 8x + 3
5x – 8x ≤ 9 + 3
-3x ≤ 12

Agora é necessário multiplicar por -1, mas é importante realizar a inversão da desigualdade, ou seja, a desigualdade era ≤ e ficará ≥.

-3x ≤ 12 (-1)
3x ≥ -12
x ≥ -12/3
x ≥ -4

S: {x ∈ R | x ≥ -4}

Representando geometricamente:

  • Inequação do 2º grau

As inequações do 2º grau são basicamente divididas nos casos a seguir:

  • ax² + bx + c > 0

  • ax² + bx + c ≥ 0

  • ax² + bx + c < 0

  • ax² + bx + c ≤ 0

  • Como resolver uma inequação do 2º grau

Para encontrar o conjunto de soluções da inequação do 2º grau, vamos recorrer à fórmula de Bhaskara.

Exemplo 1:

Encontre o conjunto de soluções da inequação:

x² – 2x – 3 < 0

Vamos encontrar as raízes da equação quadrática.

a = 1

b = -2

c = -3

Δ = 4 – 4 · 1 · (-3) = 4 + 12 = 16

Agora, fazendo o estudo de sinais, sabemos que o gráfico da função quadrática é sempre uma parábola, e, nesse caso, com a concavidade para cima, pois a > 0. Representando o estudo de sinal, queremos os instantes em que a expressão algébrica tenha valores negativos.

Note que a parábola assume valores negativos entre -1 e 3, pois é o momento em que o gráfico está abaixo do eixo.

S: {x ∈ R | -1 ≤ x ≤ 3}

Exemplo 2:

Encontre o conjunto de soluções da inequação -2x² – x + 1 ≤ 0.

Vamos encontrar x1 e x2:

a = -2

b = -1

c = 1

Δ = b² – 4ac
Δ = (-1) ² – 4 · 1 · (-2)
Δ = 1 + 8
Δ = 9

Fazendo a representação geométrica e o estudo de sinal, nesse caso, temos uma parábola com a concavidade para baixo:

Note que a parábola está abaixo do eixo para valores anteriores a -2 ou superiores a 1, então, temos que:

S: {x ∈ R | x ≤ -2 ou x ≥ 1}

Veja também: Como resolver inequação modular?

Exercícios resolvidos

Questão 1 - (Uece) A idade de Paulo, em anos, é um número inteiro par que satisfaz a desigualdade x² – 32x + 252 < 0. O número que representa a idade de Paulo pertence ao conjunto:

A) {12, 13, 14}
B) {15, 16, 17}
C) {18, 19, 20}
D) {21, 22, 23}

Resolução

Alternativa B

Vamos encontrar as soluções inteiras dessa desigualdade. Para isso, encontraremos as raízes da equação x² – 32x + 252 = 0.

a = 1

b = -32

c = 252

Δ = b² – 4ac
Δ = (-32)² – 4 · 1 · 252
Δ = 1024 – 1008
Δ = 16

O conjunto de números inteiros entre 14 e 18 são os números {15, 16, 17}.

Questão 2 - As soluções reais da inequação a seguir é o conjunto:

2x² – 5x > 2x² +3x – 8

A) S: {x ∈ R | x > -4}
B) S: {x ∈ R | x > 8}
C) S: {x ∈ R | x < 4}
D) S: {x ∈ R | x < -4}
E) S: {x ∈ R | x > 2}

Resolução

Alternativa C

Vamos isolar a variável x na inequação:

2x² – 5x – 2x² + 3x > -8
-2x > -8 (-1)
2x < 8
x < 8/2
x < 4 

Publicado por Raul Rodrigues de Oliveira

Artigos Relacionados

Condições de uma Inequação do 2º grau
Estudo de Inequações do 2º grau.
Definição de módulo de um número real
módulo, o que módulo, o que é valor absoluto, como encontrar o módulo de um número real, número real, valor negativo, valor positivo, módulo de um número real, valor absoluto de um número real.
Determinando a Equação Geral da Reta
Determinando a equação geral da reta através de matrizes.
Expressões algébricas
Aprenda o que é uma expressão algébrica e como fatorá-la. Conheça também o que é um monômio e o que é um polinômio.
Inequação exponencial
Entenda o que é uma inequação exponencial. Aprenda como resolver uma inequação exponencial. Encontre o conjunto de soluções de uma inequação exponencial.
Inequação modular
Conheça o que é inequação modular e aprenda como encontrar as suas soluções por meio de exemplos. Resolva os exercícios propostos sobre o tema.
Inequação-quociente
A inequação-quociente possui um método resolutivo bem semelhante ao da inequação-produto, no qual é necessário realizar um estudo dos sinais das funções e interseccionar estas soluções.
Monômio é um polinômio.
Polinômio
Polinômio, Monômio, Termos de um polinômio, Grau de monômio, Parte literal, Coeficiente, Expressão racional, Expressão irracional, Quantidade de termos de um polinômio.
Uma excelente ideia: aprender as propriedades da desigualdade para não errar nas inequações
Propriedades da desigualdade nas inequações
Aprenda as propriedades da desigualdade nas inequações que, juntamente à análise dos resultados, é a maior diferença entre elas e as equações.
Raízes ou zero da função do 2º Grau
Determinando as condições de existência de uma Parábola.
Resolução de Equação Produto
Clique aqui e aprenda a desenvolver a resolução da equação produto.
Sistema com Três Variáveis
Resolução de Sistema de Equações.
Utilizando a Propriedade Distributiva na Resolução de Equações
Utilizando a Propriedade Distributiva na Resolução de Equações
video icon
Português
Pré-Enem | Semiótica
O Pré-Enem é o intensivo preparatório do Brasil Escola para o Enem. Nele nós separamos os principais temas que devem ser estudados a menos de três meses do exame. Nesta transmissão você assistirá à aula sobre "Semiótica" com a professora Maria Beatriz!

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Sigmund Freud
Filosofia
Sigmund Freud
Nessa videoaula você conhecerá mais sobre a vida e estudos do "pai" da psicanálise.
video icon
Thumb Brasil Escola
Literatura
Realismo fantástico
Trazemos uma análise sobre realismo fantástico. Assista já!
video icon
Thumb Brasil Escola
Química
Funções orgânicas
Tire um tempo para entender melhor o que são as amidas.