Experimento Aleatório

O experimento aleatório está relacionado aos estudos da probabilidade, ele produz possíveis resultados que são chamados de espaço amostral.

Entendemos por experimento aleatório os fenômenos que, quando repetidos inúmeras vezes em processos semelhantes, possuem resultados imprevisíveis. O lançamento de um dado e de uma moeda são considerados exemplos de experimentos aleatórios, no caso dos dados podemos ter seis resultados diferentes {1, 2, 3, 4, 5, 6} e no lançamento da moeda, dois {cara, coroa}.

Do mesmo modo, se considerarmos uma urna com 50 bolas numeradas de 1 a 50, ao retirarmos uma bola não saberemos dizer qual o número sorteado. Essas situações envolvem resultados impossíveis de prever. Podemos relacionar esse tipo de experimento com situações cotidianas, por exemplo, não há como prever a vida útil de todos os aparelhos eletrônicos de um lote, pois isso dependerá das condições de uso impostas pelas pessoas que adquirirem o produto. Outro exemplo que demonstra a característica de um experimento aleatório são as previsões do tempo.


Os experimentos aleatórios produzem possíveis resultados que são denominados espaços amostrais. O espaço amostral possui subconjuntos denominados eventos. Como já citado anteriormente, temos que o número possível de elementos no lançamento de um dado é o seu espaço amostral, isto é, {1, 2, 3, 4, 5, 6} e os subconjuntos, os possíveis eventos são {(1), (2), (3), (4), (5), (6)}. No caso da moeda, o espaço amostral são os dois possíveis resultados {cara e coroa} e os eventos são {(cara), (coroa)}.

As cartas também são ótimos exemplos utilizados nos estudos probabilísticos. Temos que o espaço amostral das cartas é constituído de 52 cartas, onde podemos ter vários eventos, dependendo da característica escolhida. Veja:

26 cartas vermelhas e 26 cartas pretas.
13 cartas de ouro, 13 cartas de copas, 13 cartas de espadas e 13 cartas de paus.

Publicado por Marcos Noé Pedro da Silva
Matemática do Zero
Matemática do Zero | Plano Cartesiano
Nessa aula veremos o que é e para que serve o plano cartesiano.
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos