Interseção de reta e circunferência
Uma forma de encontrar a posição relativa entre uma reta e uma circunferência é verificando a sua intersecção, ou seja, analisando se a reta e a circunferência terão dois pontos em comum, apenas um ponto em comum ou nenhum ponto em comum.
O valor dessa intersecção é a solução do sistema formado com a equação geral da reta e com a equação reduzida da circunferência. Considerando a equação geral da reta ax+by+c = 0 e a equação reduzida da circunferência (x - a)2 + (y - b)2 = R2.
Resolvendo o sistema é possível encontrar uma equação do segundo grau, analisando o seu descriminante Δ é possível determinar a posição da reta em relação à circunferência:
Δ > 0 reta secante à circunferência
Δ = 0 reta tangente à circunferência
Δ < 0 reta externa à circunferência.
Se o discriminante Δ for maior ou igual à zero, para descobrir as coordenadas dos pontos é preciso terminar a resolução da equação do segundo grau.
Exemplo: Verifique se a circunferência (x+1)2 + y2 = 25 e a reta x + y – 6 = 0 possui algum ponto de intersecção.
Resolução:
x + y – 6 = 0 → equação 1
(x+1)2 + y2 = 25 → equação 2
Escolhemos uma das duas equações e isolamos uma das incógnitas.
x + y – 6 = 0
x = 6 – y
Substituímos o valor de x na equação 2.
(6 – y +1)2 + y2 = 25
(-y + 7)2 + y2 = 25
(-y)2 – 14y + 49 + y2 = 25
y2 – 14y + 49 – 25 + y2 = 0
2y2 – 14y + 24 = 0 (: 2)
y2 – 7y + 12 = 0
Δ = b2 – 4ac
Δ = (-7)2 – 4 . 1 . 12
Δ = 49 – 48
Δ = 1
Como o descriminante Δ é maior que zero sabemos que essa reta é secante à circunferência, agora para descobrir o valor das coordenadas dos dois pontos pertencentes à circunferência é preciso terminar de resolver a equação.
Para y’= 4
x = 6 – y
x = 6 – 4
x = 2
Para y’’ = 3
x = 6 – y
x = 6 – 3
x = 3
Portanto, os dois pontos que interceptam a circunferência são: (2,4) e (3,3).
O valor dessa intersecção é a solução do sistema formado com a equação geral da reta e com a equação reduzida da circunferência. Considerando a equação geral da reta ax+by+c = 0 e a equação reduzida da circunferência (x - a)2 + (y - b)2 = R2.
Resolvendo o sistema
Δ > 0 reta secante à circunferência
Δ = 0 reta tangente à circunferência
Δ < 0 reta externa à circunferência.
Se o discriminante Δ for maior ou igual à zero, para descobrir as coordenadas dos pontos é preciso terminar a resolução da equação do segundo grau.
Exemplo: Verifique se a circunferência (x+1)2 + y2 = 25 e a reta x + y – 6 = 0 possui algum ponto de intersecção.
Resolução:
x + y – 6 = 0 → equação 1
(x+1)2 + y2 = 25 → equação 2
Escolhemos uma das duas equações e isolamos uma das incógnitas.
x + y – 6 = 0
x = 6 – y
Substituímos o valor de x na equação 2.
(6 – y +1)2 + y2 = 25
(-y + 7)2 + y2 = 25
(-y)2 – 14y + 49 + y2 = 25
y2 – 14y + 49 – 25 + y2 = 0
2y2 – 14y + 24 = 0 (: 2)
y2 – 7y + 12 = 0
Δ = b2 – 4ac
Δ = (-7)2 – 4 . 1 . 12
Δ = 49 – 48
Δ = 1
Como o descriminante Δ é maior que zero sabemos que essa reta é secante à circunferência, agora para descobrir o valor das coordenadas dos dois pontos pertencentes à circunferência é preciso terminar de resolver a equação.
Para y’= 4
x = 6 – y
x = 6 – 4
x = 2
Para y’’ = 3
x = 6 – y
x = 6 – 3
x = 3
Portanto, os dois pontos que interceptam a circunferência são: (2,4) e (3,3).
Publicado por Danielle de Miranda
Artigos Relacionados
Equação geral de retas perpendiculares
Calculando a equação de retas perpendiculares por meio da equação geral da reta e dos coeficientes angulares das retas perpendiculares.
Hipérbole
Entenda o que é hipérbole e conheça suas principais propriedades. Aprenda sua equação geral e sua equação reduzida.
Inclinação e coeficiente angular de uma reta
ângulo, reta, condição de existência da reta, pontos, plano cartesiano, tangente, inclinação da reta, como encontrar a inclinação da reta, coeficiente angular, tangente do ângulo
Ponto médio de um segmento de reta
Veja como determinar o ponto médio de um segmento de reta.
Ângulo formado entre duas retas
Como determinar a medida do ângulo entre duas retas
Geografia
O que são brisas?
Assista à videoaula e entenda o que são as brisas. Conheça também os tipos mais comuns de brisas e seus mecanismos.
Últimas notícias
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos
Biologia Evolutiva
Neodarwinismo
Essa teoria explica os processos evolutivos propostos na teoria da evolução de Darwin.
Febre
Se caracteriza por ser uma elevação da temperatura do corpo a níveis superiores que os normais, saiba mais.
Ciclo de Krebs
O ciclo de Krebs, é uma das etapas do processo de respiração celular.
Álgebra
A álgebra é a área da Matemática que estuda as operações com variáveis.
Proporção áurea
A proporção áurea é um conceito matemático que representa uma relação estética e harmônica que é considerada visualmente agradável.
Primeira fórmula de Moivre
A primeira fórmula de Moivre é usada para calcular potências de números complexos na forma polar ou trigonométrica.
População
Demografia
A demografia é uma ciência que realiza diversos estudos populacionais.
Geopolítica
Nova Ordem Mundial
Período geopolítico vivenciado pela sociedade planetária após o fim da Guerra Fria.
Tipos de indústria
Conheça alguns tipos de indústria de base.
Fontes de energia
Energia das Marés
Entenda como a força gravitacional do Sol e da Lua interferem nas marés.
Mecânica
Plano inclinado com atrito
Decompor as forças é uma das etapas para cálculos que envolvem o plano inclinado com atrito.
Ondulatória
Função de onda
Ao estudarmos as ondas vimos que elas têm origem em meios elásticos, como em cordas, na superfície da água, do ar, entenda.
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.