Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Geometria analítica
  4. Equação da hipérbole

Equação da hipérbole

No estudo da geometria analítica, as diversas figuras geométricas são estudadas do ponto de vista algébrico. Ponto, retas, circunferências são esquematizadas com o auxílio da álgebra. As cônicas, que são figuras geométricas oriundas de secções transversais realizadas em um cone, também são muito exploradas. A própria circunferência, a elipse, a parábola e a hipérbole são classificadas de cônicas. Vejamos como a hipérbole pode ser explorada do ponto de vista da geometria analítica.

Definição de hipérbole: Considere F1 e F2 como sendo dois pontos distintos do plano e 2c a distância entre eles. Hipérbole é o conjunto dos pontos do plano, tais que a diferença, em valor absoluto, das distâncias à F1 e F2 é a constante 2a (0 < 2a < 2c).
A hipérbole pode ter os focos sobre o eixo x ou sobre o eixo y e sua equação varia em cada um dos casos. Vamos deduzir sua equação para cada um dos casos citados.

Hipérbole com focos sobre o eixo x.

Como os focos da hipérbole estão localizados sobre o eixo x, suas coordenadas serão: F2(c, 0) e F1(– c, 0). Nesse caso, a equação da hipérbole será do tipo:

 

Hipérbole com focos sobre o eixo y.

 

Como os focos da hipérbole estão sobre o eixo y, suas coordenadas serão: F2(0, c) e F1(0, – c). Nesse caso, a equação da hipérbole será do tipo:

Elementos e propriedades da hipérbole:
2c → é a distância focal.
c2 = a2 + b2 → relação fundamental.
A1(– a, 0) e A2(a, 0) → são os vértices da hipérbole.
2a → é a medida do eixo real.
2b → é a medida do eixo imaginário.
c/a → é a excentricidade

Não pare agora... Tem mais depois da publicidade ;)

Exemplo 1. Determine a equação da hipérbole com focos F1(– 10, 0) e F2(10, 0) e eixo real medindo 16 unidades.
Solução: De acordo com as coordenadas dos focos percebemos que eles estão sobre o eixo x, pois as coordenadas y são iguais a zero. Também podemos afirmar que c = 10.

Foi dado que o eixo real tem 16 unidades de comprimento. Logo, temos que:
2a = 16 → a = 8

Para determinar a equação da hipérbole precisamos conhecer os valores de a e b, portanto devemos utilizar a relação fundamental para encontrarmos o valor de b. Segue que:
c2 = a2 + b2
102 = 82 + b2
b2 = 100 – 64
b2 = 36
b = 6

Conhecidos os valores de a e b podemos escrever a equação da hipérbole com focos sobre o eixo x:

Exemplo 2. Determine as coordenadas dos focos da hipérbole de equação:

Solução: Observando a equação da hipérbole podemos constatar que seus focos estão sobre o eixo y, logo terão coordenadas do tipo F1(0, – c) e F2(0, c).
Da equação da hipérbole obtemos que:
a2 = 16 → a = 4
b2 = 9 → b = 3
Utilizando a relação fundamental, teremos:
c2 = a2 + b2
c2 = 16 + 9
c2 = 25
c = 5
Portanto, os focos da hipérbole são F1(0 , – 5) e F2(0, 5).

Por Marcelo Rigonatto
Especialista em Estatística e Modelagem Matemática

Publicado por: Marcelo Rigonatto
Assista às nossas videoaulas
Assuntos relacionados
Inclinação e coeficiente angular de uma reta
ângulo, reta, condição de existência da reta, pontos, plano cartesiano, tangente, inclinação da reta, como encontrar a inclinação da reta, coeficiente angular, tangente do ângulo
Posição relativa entre ponto e circunferência
distância entre dois pontos, distância entre ponto e reta, Posições relativas entre um ponto e uma circunferência, circunferência, reta, ponto comparado à circunferência, ponto externo à circunferência, ponto interno à circunferência, ponto pertencente à circunferência.
Interseção de reta e circunferência
distância entre ponto e reta, Posições relativas entre uma reta e uma circunferência, circunferência, reta, reta externa à circunferência, reta interna à circunferência, reta secante à circunferência.
Ângulo formado entre duas retas
Como determinar a medida do ângulo entre duas retas
Baricentro
Baricentro do triângulo
Definição do baricentro de um triângulo. Estudo das coordenadas do ponto baricentro de um triângulo qualquer.
Cônicas: intersecções entre um plano e um cone
Cônicas
Aprenda o que são cônicas, figuras geométricas formadas pela intersecção de um plano com um cone de revolução. Descubra também quais são as figuras elipse, hipérbole e parábola. Conheça ainda as equações reduzidas de cada uma das cônicas nos casos em que os focos estejam sobre o eixo x ou no eixo y.
Cálculo do coeficiente angular
ângulo, reta, condição de existência da reta, pontos, plano cartesiano, tangente, inclinação da reta, como encontrar a inclinação da reta, coeficiente angular, tangente do ângulo, cálculo do coeficiente angular.
Ponto médio de um seguimento de reta
: Segmento de reta, reta, pontos, o que é segmento de reta, representação de um segmento de reta, Ponto médio, ponto médio de um segmento de reta, abscissas, coordenadas.
Posições relativas de duas retas
Retas, retas paralelas, retas concorrentes, o que são retas paralelas, o que são retas concorrentes, Posições relativas de duas retas, coeficiente angular de retas paralelas, coeficiente angular de retas concorrentes.