Tabelas de razões trigonométricas

As tabelas de razões trigonométricas relacionam cada ângulo agudo aos seus respectivos valores de seno, cosseno e tangente.
Trigonometria: razões entre os lados de um triângulo retângulo relacionadas com um de seus ângulos

As tabelas trigonométricas relacionam um ângulo aos seus respectivos valores de seno, cosseno e tangente. Elas foram criadas para facilitar quaisquer cálculos envolvendo trigonometria, pois, fazendo uso de uma dessas tabelas, basta procurar os valores numéricos de seno, cosseno e tangente referentes a um ângulo qualquer.

Seno, cosseno e tangente são resultados da divisão dos comprimentos de dois lados de um triângulo retângulo. Para definir essas divisões, é necessário saber que, em um triângulo retângulo, o lado oposto ao ângulo de 90º é chamado de hipotenusa e que os outros dois lados são chamados de catetos.

Tomando o ângulo θ de um triângulo retângulo, sendo θ diferente de 90º, definiremos:

Senθ = Cateto oposto a θ
          hipotenusa

cosθ = Cateto adjacente a θ
         hipotenusa

tgθ = Cateto oposto a θ
         Cateto ajacente a θ

Essas razões funcionam em qualquer triângulo retângulo que possua um ângulo igual a θ, independentemente do comprimento dos lados desses triângulos, em virtude da semelhança de triângulos pelo caso ângulo – ângulo.

A primeira tabela trigonométrica envolve apenas ângulos notáveis, isto é, os ângulos de 30º, 45º e 60º.


Tabela dos valores numéricos de seno, cosseno e tangente dos ângulos notáveis

Geralmente os professores usam uma música para que os alunos jamais se esqueçam dessa tabela. A canção é a seguinte:

um, dois, três.

Três, dois, um.

Tudo sobre dois,

só não tem raiz o um!

Repare que cada verso é um passo para a construção dessa tabela. Escreve-se 1, 2, 3 na primeira linha; 3, 2, 1 na segunda; divide-se tudo por 2, e o único numerador que não possui raiz é o 1. A linha referente à tangente é obtida pela divisão dos valores de seno por cosseno.

Caso os ângulos sejam diferentes de 30º, 45º ou 60º, pode-se utilizar a tabela seguinte, que aproxima os valores de seno, cosseno e tangente de cada ângulo agudo.


Tabela trigonométrica com todos os ângulos agudos

Exemplo: Calcule o valor de x no triângulo abaixo.


Triângulo retângulo com um ângulo agudo de 35°

Para calcular o valor de x na figura acima, basta utilizar a noção de cosseno, já que as medidas que dispomos são de um ângulo agudo de um triângulo retângulo, do cateto adjacente a esse ângulo e da hipotenusa (é a medida que queremos descobrir).

Cosθ = Cateto adjacente
           hipotenusa

Cos35° = 4
              x

Observe na tabela que Cos35° = 0,819. Substitua esse valor na expressão acima e utilize regra de três para calcular o valor de x.

Cos35° = 4
              x

0,819 = 4
            x

0,819x = 4

x =     4   
      0,819

x = 4,88

Logo, a medida de x é 4,88.

Publicado por Luiz Paulo Moreira Silva
Matemática do Zero
Matemática do Zero | Princípio fundamental da contagem
Nessa aula veremos o que é o princípio fundamental da contagem. O princípio fundamental da contagem é uma técnica para calcularmos de quantas maneiras decisões podem combinar-se. Se uma decisão pode ser tomada de n maneiras e outra decisão pode ser tomada de m maneiras, o número de maneiras que essas decisões podem ser tomadas simultaneamente é calculado pelo produto de n · m.
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos