Whatsapp icon Whatsapp

Razões trigonométricas

As razões trigonométricas são encontradas entre os lados de um triângulo retângulo. O triângulo é considerado retângulo quando possui um ângulo reto, ou seja, com 90º.

Na trigonometria, percebeu-se que existe uma proporção entre triângulos retângulos, o que tornou possível encontrar valores desconhecidos dessa figura geométrica por meio de razões trigonométricas. São elas: o seno, o cosseno e a tangente.

Os ângulos notáveis (30º, 45º e 60º) são bastante utilizados no cálculo das razões trigonométricas, mas é possível aplicá-las para qualquer ângulo.

Leia também: 3 erros mais cometidos na trigonometria

Triângulo retângulo

As razões trigonométricas são seno, cosseno e tangente.
As razões trigonométricas são seno, cosseno e tangente.

Antes de conhecer as razões trigonométricas, é necessário conhecer bem o triângulo retângulo e os nomes dos seus lados. Um triângulo é classificado como retângulo quando possui um ângulo reto, ou seja, com 90º.

Em um triângulo retângulo, o maior lado é conhecido como hipotenusa, e ele fica sempre localizado do lado oposto ao ângulo reto. Os demais lados são conhecidos como catetos. Outro elemento que deve ser levado em consideração são os outros dois ângulos do triângulo.

C1 e C2 são os catetos.
C1 e C2 são os catetos.

Razões trigonométricas no triângulo retângulo

Conhecendo a hipotenusa e os catetos de um triângulo retângulo, existem três razões trigonométricas, que nada mais são do que razões entre os lados do triângulo. Para calcular o valor de qualquer uma dessas razões, é fundamental definir o ângulo que utilizaremos como referência. As razões trigonométricas são seno, cosseno e tangente. Para compreender cada uma delas, é necessário entender o que é um cateto oposto e o que é um cateto adjacente.

Na imagem, é possível perceber que o lado que possui medida c é o maior lado e ele está de frente ao ângulo reto, o que faz com que ele seja a hipotenusa. Já os demais catetos podem ser considerados como cateto oposto ou adjacente, dependendo do ângulo que estamos utilizando como referência.

Se o ângulo de referência é o ɑ, então o cateto oposto a ele é o que possui a medida representada por a. O outro cateto, que junto com a hipotenusa forma o ângulo ɑ, é adjacente, logo o cateto representado por b é adjacente ao ângulo ɑ.

Não pare agora... Tem mais depois da publicidade ;)

Por outro lado, se o ângulo de referência for o ꞵ, a hipotenusa continua a mesma, mas há uma mudança em qual será o cateto adjacente e qual será o cateto oposto em comparação ao ângulo ɑ. O cateto oposto é aquele que está de frente ao ângulo ꞵ, que, na imagem, está sendo representado por b, e o cateto adjacente é o que forma o ângulo ꞵ junto com a hipotenusa, nesse caso, representado por a.

Sabendo identificar o que é um cateto oposto e o que é um cateto adjacente em um triângulo retângulo, podemos definir o que é o seno, o cosseno e a tangente:

sen ɑ → seno do ângulo ɑ

cos ɑ → cosseno do ângulo ɑ

tg ɑ → tangente do ângulo ɑ

Para resolver problemas envolvendo as razões trigonométricas, devemos identificar qual é o ângulo de referência e qual das razões trigonométricas queremos usar. Outra informação importante para resolver esse tipo de problema são os ângulos notáveis.

Veja também: O que são transformações trigonométricas?

Ângulos notáveis

Os ângulos notáveis são os ângulos de 30º, 45º e 60º, que são os mais comuns em questões de vestibulares e concursos. Para resolver exercícios envolvendo os ângulos notáveis, é necessário conhecer o valor do seno, do cosseno e da tangente para eles, o que pode ser conferido por meio de uma tabela trigonométrica.

  • Tabela trigonométrica

Passo a passo de como resolver problemas envolvendo razões trigonométricas

Para encontrar lados desconhecidos de um triângulo retângulo, é necessário conhecer um ângulo e um de seus lados.

1º passo: identificar qual razão trigonométrica deve ser usada.

Para identificar qual razão utilizar, analisamos de qual lado conhecemos o valor e qual queremos descobrir em relação ao ângulo. Por exemplo, se a questão nos deu o valor da hipotenusa e quer que encontremos o valor do cateto adjacente, a razão que relaciona cateto adjacente e hipotenusa é o cosseno. Utilizamos esse mesmo raciocínio para identificar se é o seno ou a tangente.

2º passo: aplicar a fórmula da razão trigonométrica que identificamos no passo anterior com os valores dos lados do triângulo.

3º passo: consultar na tabela o valor da razão trigonométrica escolhida para o ângulo de referência

e substituir na fórmula.

4º passo: resolver a equação e encontrar o valor desejado.

Exemplo:

Encontre o valor de x no triângulo a seguir.

Resolução:

Primeiro vamos identificar quais foram os lados fornecidos em relação ao ângulo de 30º. Queremos descobrir o valor do cateto adjacente ao ângulo, e foi dada a hipotenusa do triângulo retângulo. A razão que relaciona hipotenusa e cateto adjacente é o cosseno.

Agora aplicaremos o cosseno:

Consultando na tabela trigonométrica, vamos substituir o valor de cosseno de 30º.

Acesse também: Transformações trigonométricas: fórmulas de adição

Exercícios resolvidos

Questão 1 – Um avião iniciou voo sob um ângulo de 30º em relação à pista. Após percorrer 1 km de distância, no ar, com o mesmo ângulo, qual é a altura atingida pelo avião em relação à pista?

A) 0,5 km

B) 1 km

C) 1,5 km

D) 2 km

E) 2,5 km

Resolução

Alternativa A.

Ilustrando a situação, temos que:

Analisando a imagem, seja x a altura alcançada pelo avião, temos o cateto oposto e a hipotenusa do triângulo, logo utilizaremos o seno para encontrar a altura.

Questão 2 – (Enem Libras 2017) A famosa Torre de Pisa, localizada na Itália, assim como muitos outros prédios, por motivos adversos, sofrem inclinações durante ou após suas construções.

Um prédio, quando construído, dispunha-se verticalmente e tinha 60 metros de altura. Ele sofreu uma inclinação de um ângulo α, e a projeção ortogonal de sua fachada lateral sobre o solo tem largura medindo 1,80 metro, conforme mostra a figura.

O valor do ângulo de inclinação pode ser determinado fazendo-se o uso de uma tabela como a apresentada.

Uma estimativa para o ângulo de inclinação α, quando dado em grau, é tal que:

A) 0 ≤ ɑ < 1,0
B) 1,0 ≤ ɑ < 1,5
C) 1,5 ≤ ɑ < 1,8
D) 1,8 ≤ ɑ < 2,0
E) 2,0 ≤ ɑ < 3,0

Resolução

Alternativa C.

Aplicando seno no triângulo retângulo, temos que:

Analisando a tabela, 0,03 está entre 0,026 e 0,031, logo o ângulo está entre 1,5 e 1,8.

Publicado por Raul Rodrigues de Oliveira
Assista às nossas videoaulas

Artigos Relacionados

A lei dos senos permite relacionar lados e ângulos de qualquer triângulo
A Lei dos Senos - compreendendo sua aplicação
Clique aqui e aprenda como e quando aplicar a lei dos senos!
Cálculo das razões trigonométricas
Utilizando as relações seno, cosseno e tangente no triângulo retângulo.
Ferramentas usadas para medir e construir ângulos no círculo trigonométrico
Círculo trigonométrico
Clique para aprender o que é um círculo trigonométrico, como construí-lo e o modo como o seno e o cosseno são marcados sobre ele.
Forma Geral de Arcos Côngruos
Forma geral de arcos côngruos e determinação principal de arcos.
Fórmulas usadas para cálculo de razões trigonométricas envolvendo arcos duplos
Fórmulas de arco duplo
Clique e aprenda como calcular arcos duplos na trigonometria. Obtenha as fórmulas utilizadas para o cálculo de arcos duplos e veja exemplos de como usá-las. Confira também uma maneira de obter essas fórmulas a partir das expressões usadas para adição de arcos e da relação fundamental da trigonometria. Clique e aprenda!
Seno e cosseno são duas das razões trigonométricas que podem aparecer em inequações
Inequações trigonométricas: cosx < k
Clique e aprenda a resolver inequações trigonométricas do tipo cosx < k e conheça os fundamentos para essa resolução.
É possível solucionar inequações trigonométricas com o auxílio do ciclo trigonométrico
Inequações trigonométricas: senx > k
Clique e descubra como resolver, com o uso do ciclo trigonométrico, senx > k, uma das inequações trigonométricas.
Medidas de Arcos de Circunferência
Confira aqui as unidades de medidas de arcos de circunferência!
O Teorema de Pitágoras Aplicado no Estudo da Trigonometria
Cálculo da diagonal do quadrado e da altura do triângulo equilátero.
A relação fundamental da Trigonometria é baseada no teorema de Pitágoras
Primeira relação fundamental da Trigonometria
Clique e aprenda o que é a primeira relação fundamental da Trigonometria e saiba como esse teorema relaciona-se com o ciclo trigonométrico.
Unidade de medida usada para arcos de circunferências: radiano
Radiano
Clique e descubra o que é radiano, nome dado à medida do arco de uma circunferência de raio r quando esse arco também mede r. Medidas em radianos relacionam-se a ângulos centrais de uma circunferência, que, por sua vez, podem ser relacionados a um número real por meio de razões trigonométricas. Clique e confira!
Relações no triângulo retângulo
Triângulo, Triângulo retângulo, Elementos do triângulo retângulo, Características do triângulo retângulo, Teoremas de Pitágoras, Relação métrica do triângulo retângulo.
Secante, cossecante e cotangente são razões relacionadas ao ciclo trigonométrico
Secante, cossecante e cotangente
Clique para descobrir o que são as razões secante, cossecante e cotangente e quais são suas relações com seno, cosseno e tangente.
Por meio das relações fundamentais da Trigonometria, é possível relacionar as razões trigonométricas
Segunda relação fundamental da Trigonometria
Clique e descubra qual é a segunda relação fundamental da Trigonometria e entenda como esse teorema associa as razões trigonométricas básicas.
O círculo trigonométrico representa medidas de seno, cosseno e tangente
Seno, cosseno e tangente
Clique e aprenda o que é seno, cosseno e tangente, além de conferir alguns exemplos dessas razões trigonométricas!
Trigonometria: razões entre os lados de um triângulo retângulo relacionadas com um de seus ângulos
Tabelas de razões trigonométricas
Clique para aprender a utilizar tabelas de razões trigonométricas e para descobrir os valores de seno, cosseno e tangente para ângulos agudos!
As transformações trigonométricas são métodos que usam as razões trigonométricas para fazer operações entre arcos
Transformações trigonométricas
Clique e aprenda quais são as transformações trigonométricas e entenda como podem ser usadas para calcular o seno da soma de dois arcos, por exemplo.
As fórmulas de adição são usadas em operações entre razões trigonométricas
Transformações trigonométricas: fórmulas de adição
Clique aqui e descubra o que são e como podem ser usadas as transformações trigonométricas, métodos utilizados para realizar operações entre razões desse tipo. Aprenda as fórmulas de adição para calcular seno, cosseno e tangente da soma e subtração de dois arcos. Veja também exemplos com essas operações.
Entre os erros mais frequentes em questões de Trigonometria, está o uso incorreto das razões trigonométricas
Três erros mais cometidos na Trigonometria
Descubra quais são os três erros mais cometidos em Trigonometria e saiba como resolver corretamente questões com esse conteúdo.
Ângulos notáveis são os mais usados na Trigonometria
Ângulos notáveis
Conheça os ângulos notáveis e descubra uma maneira de encontrá-los a partir da construção de triângulos.
video icon
Física
Espelhos planos
Na aula de hoje, o professor Rafael Helerbrock traz um resumo sobre o funcionamento dos espelhos planos, superfícies planas, polidas e sem curvatura capazes de promover a reflexão regular da luz.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Videoaula Brasil Escola
Inglês
Genitive Case
É hora de aperfeiçoar sua gramática na Língua Inglesa. Assista!
video icon
Videoaula Brasil Escola
Sociologia
Democracia racial
Você sabe o que significa democracia racial? Clique e nós te ensinamos!
video icon
Tigres Asiáticos
Geografia
Tigres Asiáticos
Assista à nossa videoaula sobre os Tigres Asiáticos, e conheça as razões do desenvolvimento rápido desses territórios.