Taxas Equivalentes
Em algumas situações relacionadas à Matemática Financeira temos que realizar operações de equivalência das taxas de juros. Em situações de longo prazo conhecemos a taxa mensal de juros, mas desconhecemos o valor da taxa anual ou dos juros acumulados no período estabelecido. A expressão matemática que fornece a taxa de juros equivalente a um período é a seguinte:
(1 + ia) = (1 + ip)n
ia = taxa atual equivalente
ip = taxa do período dado
n = número de períodos
Exemplo 1
Qual a taxa anual de juros de um financiamento que cobra juros mensais de 4,5%.
Temos que 4,5% = 4,5 / 100 = 0,045
(1 + ia) = (1 + 0,045)12
1 + ia = 1,04512
1 + ia = 1,6959
ia = 1,6959 – 1
ia = 0,6959
ia = 69,59 % ao ano
Exemplo 2
Determine a taxa mensal equivalente a 0,2% ao dia.
Sabemos que 0,2% = 0,2 / 100 = 0,002
(1 + ia) = (1 + 0,002)30
1 + ia = 1,00230
1 + ia = 1,0618
ia = 1,0618 – 1
ia = 0,0618
ia = 6,18% ao mês
Exemplo 3
Qual a taxa semestral equivalente a 40% ao ano.
Temos que 40% = 40 / 100 = 0,4
Nesse caso, vale ressaltar que 1 ano possui 2 semestres, então:
(1 + ia)2 = 1 + 0,4
(1 + ia)2 = 1,4
1 + ia = 1,4 1/2
1 + ia = 1,1832
ia = 1,1832 – 1
ia = 0,1832
ia = 18,32% ao semestre
Exemplo 4
Qual a taxa mensal de juros referentes a uma taxa anual de 144%.
Temos que 144% = 144/100 = 1,44
(1 + ia)12 = 1 + 1,44
(1 + ia)12 = 2,44
1 + ia = 2,44 1/12
1 + ia = 1,0768
ia = 1,0768 – 1
ia = 0,0768
ia = 7,68% ao mês
Exemplo 5
Calcule os juros acumulados durante 2 anos referentes a uma taxa mensal de 0,5%.
0,5% = 0,5 / 100 = 0,005
(1 + ia) = (1 + 0,005)24
1 + ia = 1,00524
1 + ia = 1,1271
ia = 1,1271 – 1
ia = 0,1271
ia = 12,71%
(1 + ia) = (1 + ip)n
ia = taxa atual equivalente
ip = taxa do período dado
n = número de períodos
Exemplo 1
Qual a taxa anual de juros de um financiamento que cobra juros mensais de 4,5%.
Temos que 4,5% = 4,5 / 100 = 0,045
(1 + ia) = (1 + 0,045)12
1 + ia = 1,04512
1 + ia = 1,6959
ia = 1,6959 – 1
ia = 0,6959
ia = 69,59 % ao ano
Exemplo 2
Determine a taxa mensal equivalente a 0,2% ao dia.
Sabemos que 0,2% = 0,2 / 100 = 0,002
(1 + ia) = (1 + 0,002)30
1 + ia = 1,00230
1 + ia = 1,0618
ia = 1,0618 – 1
ia = 0,0618
ia = 6,18% ao mês
Exemplo 3
Qual a taxa semestral equivalente a 40% ao ano.
Temos que 40% = 40 / 100 = 0,4
Nesse caso, vale ressaltar que 1 ano possui 2 semestres, então:
(1 + ia)2 = 1 + 0,4
(1 + ia)2 = 1,4
1 + ia = 1,4 1/2
1 + ia = 1,1832
ia = 1,1832 – 1
ia = 0,1832
ia = 18,32% ao semestre
Exemplo 4
Qual a taxa mensal de juros referentes a uma taxa anual de 144%.
Temos que 144% = 144/100 = 1,44
(1 + ia)12 = 1 + 1,44
(1 + ia)12 = 2,44
1 + ia = 2,44 1/12
1 + ia = 1,0768
ia = 1,0768 – 1
ia = 0,0768
ia = 7,68% ao mês
Exemplo 5
Calcule os juros acumulados durante 2 anos referentes a uma taxa mensal de 0,5%.
0,5% = 0,5 / 100 = 0,005
(1 + ia) = (1 + 0,005)24
1 + ia = 1,00524
1 + ia = 1,1271
ia = 1,1271 – 1
ia = 0,1271
ia = 12,71%
Publicado por Marcos Noé Pedro da Silva
Artigos Relacionados
Aumentos e Descontos
Utilizando porcentagem na obtenção de descontos e aumentos.
Indicadores inflacionários
Compreendendo quais são os indicadores inflacionários, como funcionam e como controlam o aumento abusivo dos preços das mercadorias. Estudo dos indicadores inflacionários e dos órgãos responsáveis por eles.
Juros simples
Entenda o conceito de juros simples e veja como calculá-lo. Saiba também a diferença entre juros simples e juros composto.
Resolvendo Proporções
Resolvendo proporções pela regra prática.
Sistema Americano de Empréstimo
Utilizando o sistema americano na quitação de empréstimos.
História
Grécia Antiga: Pólis
Assista à nossa videoaula para conhecer as principais características de uma pólis grega. Confira também, no nosso canal, outras informações sobre a Grécia Antiga.
Últimas notícias
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos
Teorias evolucionistas
As teorias apresentam como ponto principal a defesa de que os organismos do planeta sofrem modificações ao longo do tempo.
Osmose
Osmose é um processo de movimentação da água através de uma membrana semipermeável.
Coluna vertebral
Estrutura que forma o eixo do corpo, garante a sustentação e a movimentação do corpo.
Operações matemáticas básicas
São elas a adição, a subtração, a multiplicação e a divisão.
Números
Os números são utilizados para representar quantidades, ordem e medidas.
Inflação
O aumento acentuado dos preços é uma característica da inflação.
O que são big techs?
Big techs são grandes empresas de tecnologia que dominam o cenário global de produção de informações.
Patrimônio cultural
Os patrimônios culturais, são importantes registros materiais ou imateriais da história de um povo.
Quilombolas
Quilombolas são membros remanescentes das comunidades chamadas quilombos.
Fontes de energia
Energia das Marés
Entenda como a força gravitacional do Sol e da Lua interferem nas marés.
Mecânica
Plano inclinado com atrito
Decompor as forças é uma das etapas para cálculos que envolvem o plano inclinado com atrito.
Ondulatória
Função de onda
Ao estudarmos as ondas vimos que elas têm origem em meios elásticos, como em cordas, na superfície da água, do ar, entenda.
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.