Utilizando a Propriedade Distributiva na Resolução de Equações
Resolver uma equação significa aplicar técnicas matemáticas no intuito de determinar o valor da incógnita. Algumas equações são constituídas de parênteses os quais precisam ser eliminados na determinação do valor desconhecido. Essa simplificação dos parênteses pode ser feita através da utilização da propriedade distributiva. Após a aplicação da propriedade distributiva, o processo de resolução deve ser conduzido normalmente. Os exemplos a seguir demonstrarão processos de resolução de equações partindo do princípio da propriedade distributiva da multiplicação.
Princípio da Propriedade Distributiva da Multiplicação
a * (b + c) → ab + ac
2 * (x – 1 ) → 2x – 2
4 * (y – 2) → 4y – 8
6 * (x + 4) → 6x + 24
Exemplo 1
8 (x + 2) = 4 (x + 6) → aplicar a propriedade distributiva
8x + 16 = 4x + 24
8x – 4x = 24 – 16
4x = 8
x = 8 / 4
x = 2
Exemplo 2
8 (x + 3) = 40 → aplicar a propriedade distributiva
8x + 24 = 40
8x = 40 – 24
8x = 16
x = 16 / 8
x = 2
Exemplo 3
12x – 14 (1 – x) – 2 (10x + 4) = 0 → aplicar a propriedade distributiva
12x – 14 + 14x – 20x – 8 = 0
12x + 14x – 20x = 14 + 8
6x = 22
x = 22 / 6
x = 11 / 3
Exemplo 4
10 (2x – 1) = 4 (x + 4) → aplicar a propriedade distributiva
20x – 10 = 4x + 16
20x – 4x = 16 + 10
16x = 26
x = 26 / 16
x = 13 / 8
Exemplo 5
4x – 6 (4 – x) = 10 + 8 (2x + 1) → aplicar a propriedade distributiva
4x – 24 + 6x = 10 + 16x + 8
4x + 6x – 16x = 10 + 8 + 24
– 6x = 42 *(–1)
6x = –42
x = –42/6
x = – 7
Exemplo 6
10x – 20 (x – 1) = 40 – 30 (x – 2) → aplicar a propriedade distributiva
10x – 20x + 20 = 40 – 30 x + 60
10x – 20x + 30x = 40 + 60 – 20
20x = 80
x = 80 / 20
x = 4
Exemplo 7
2 (3x – 7) + 3 (x – 1) = 4 (2x – 3) → aplicar a propriedade distributiva
6x – 14 + 3x – 3 = 8x – 12
6x + 3x – 8x = –12 +14 + 3
x = 5
Exemplo 8
6 (x – 3) + 12 (2x + 1) = 24 – 15 (x – 4) → aplicar a propriedade distributiva
6x – 18 + 24x + 12 = 24 – 15x + 60
6x + 24x + 15x = 24 + 60 + 18 – 12
45x = 90
x = 90 / 45
x = 2
Princípio da Propriedade Distributiva da Multiplicação
a * (b + c) → ab + ac
2 * (x – 1 ) → 2x – 2
4 * (y – 2) → 4y – 8
6 * (x + 4) → 6x + 24
Exemplo 1
8 (x + 2) = 4 (x + 6) → aplicar a propriedade distributiva
8x + 16 = 4x + 24
8x – 4x = 24 – 16
4x = 8
x = 8 / 4
x = 2
Exemplo 2
8 (x + 3) = 40 → aplicar a propriedade distributiva
8x + 24 = 40
8x = 40 – 24
8x = 16
x = 16 / 8
x = 2
Exemplo 3
12x – 14 (1 – x) – 2 (10x + 4) = 0 → aplicar a propriedade distributiva
12x – 14 + 14x – 20x – 8 = 0
12x + 14x – 20x = 14 + 8
6x = 22
x = 22 / 6
x = 11 / 3
Exemplo 4
10 (2x – 1) = 4 (x + 4) → aplicar a propriedade distributiva
20x – 10 = 4x + 16
20x – 4x = 16 + 10
16x = 26
x = 26 / 16
x = 13 / 8
Exemplo 5
4x – 6 (4 – x) = 10 + 8 (2x + 1) → aplicar a propriedade distributiva
4x – 24 + 6x = 10 + 16x + 8
4x + 6x – 16x = 10 + 8 + 24
– 6x = 42 *(–1)
6x = –42
x = –42/6
x = – 7
Exemplo 6
10x – 20 (x – 1) = 40 – 30 (x – 2) → aplicar a propriedade distributiva
10x – 20x + 20 = 40 – 30 x + 60
10x – 20x + 30x = 40 + 60 – 20
20x = 80
x = 80 / 20
x = 4
Exemplo 7
2 (3x – 7) + 3 (x – 1) = 4 (2x – 3) → aplicar a propriedade distributiva
6x – 14 + 3x – 3 = 8x – 12
6x + 3x – 8x = –12 +14 + 3
x = 5
Exemplo 8
6 (x – 3) + 12 (2x + 1) = 24 – 15 (x – 4) → aplicar a propriedade distributiva
6x – 18 + 24x + 12 = 24 – 15x + 60
6x + 24x + 15x = 24 + 60 + 18 – 12
45x = 90
x = 90 / 45
x = 2
Publicado por Marcos Noé Pedro da Silva
Artigos Relacionados
Matemática
Inequação Exponencial
Nesta aula veremos o que é uma inequação exponencial e como resolver questões desse assunto.
Últimas notícias
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos
Biologia Evolutiva
Neodarwinismo
Essa teoria explica os processos evolutivos propostos na teoria da evolução de Darwin.
Febre
Se caracteriza por ser uma elevação da temperatura do corpo a níveis superiores que os normais, saiba mais.
Ciclo de Krebs
O ciclo de Krebs, é uma das etapas do processo de respiração celular.
Álgebra
A álgebra é a área da Matemática que estuda as operações com variáveis.
Proporção áurea
A proporção áurea é um conceito matemático que representa uma relação estética e harmônica que é considerada visualmente agradável.
Primeira fórmula de Moivre
A primeira fórmula de Moivre é usada para calcular potências de números complexos na forma polar ou trigonométrica.
População
Demografia
A demografia é uma ciência que realiza diversos estudos populacionais.
Geopolítica
Nova Ordem Mundial
Período geopolítico vivenciado pela sociedade planetária após o fim da Guerra Fria.
Tipos de indústria
Conheça alguns tipos de indústria de base.
Fontes de energia
Energia das Marés
Entenda como a força gravitacional do Sol e da Lua interferem nas marés.
Mecânica
Plano inclinado com atrito
Decompor as forças é uma das etapas para cálculos que envolvem o plano inclinado com atrito.
Ondulatória
Função de onda
Ao estudarmos as ondas vimos que elas têm origem em meios elásticos, como em cordas, na superfície da água, do ar, entenda.
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.