Whatsapp icon Whatsapp

Lei de Hooke

A lei de Hooke é usada para calcular a força elástica que é produzida pela deformação de uma mola ou outros materiais elásticos. Quando um corpo elástico é comprimido ou esticado, uma força restauradora tende a fazê-lo voltar ao seu formato original. Tal força é proporcional à deformação sofrida pelo corpo, bem como à sua constante elástica.

A força elástica é uma importante aplicação das leis de Newton e, a partir dela, é possível compreender com facilidade o comportamento da 3ª lei de Newton, a lei da ação e reação.

Veja também: Leis de Newton — o que dizem, exemplos, exercícios

Definição da força elástica (lei de Hooke)

A força elástica é definida a partir da lei de Hooke. Essa lei afirma que, quando se aplica uma força sobre uma mola, ela se deforma, dando origem a uma força elástica que tem a mesma direção da força externa, mas sentido oposto.

De acordo com a lei de Hooke, a força elástica apresenta módulo igual à força que é aplicada sobre a mola. Além disso, essa força é também igual ao produto entre a constante elástica da mola (k), medida em newtons por metro (N/m), e a deformação da mola (x), medida em metros.

Quando deformadas, as molas produzem forças elásticas, de acordo com a lei de Hooke.
Quando deformadas, as molas produzem forças elásticas, de acordo com a lei de Hooke.

A fórmula da lei de Hooke é a seguinte:

Na figura anterior, é possível perceber a presença de um sinal negativo, que indica que a força elástica apresenta sempre sentido oposto à deformação da mola. Se a mola estiver sendo esticada, por exemplo, a deformação x será positiva, portanto a força elástica F será negativa.

Não pare agora... Tem mais depois da publicidade ;)

Gráfico da lei de Hooke

O gráfico utilizado para analisar a lei de Hooke relaciona a intensidade da força elástica, em N, em relação à elongação da mola, em m. Confira um exemplo desse gráfico por meio da figura a seguir:

No gráfico da força em função da deformação, é possível obter a constante elástica da mola. Nesse caso, a constante elástica representa a inclinação da reta, podendo ser obtida a partir da divisão entre o módulo da força (F) pelo módulo da deformação (x). Observe:

Veja também: Energia potencial elástica – definição, fórmulas e exercícios resolvidos

Exercícios resolvidos sobre a lei de Hooke

Questão 1 — Determine o módulo da deformação sofrida por uma mola de constante elástica de 200 N/m, quando sujeita a uma força de 50 N.

a) 10,0 m

b) 0,50 m

c) 0,25 m

d) 0,10 m

Resolução:

Vamos utilizar a lei de Hooke para calcular a deformação sofrida por essa mola.

Com base no cálculo feito na figura acima, é possível perceber que a deformação sofrida pela mola é de 0,25 m. Dessa maneira, a alternativa correta é a letra C.

Questão 2 — Uma mola sofre uma deformação de 10 cm (0,1 m) quando comprimida por uma força de 200 N. Determine a constante elástica dessa mola.

a) 50 N/m

b) 20 N/m

c) 2000 N/m

d) 500 N/m

Resolução:

Vamos calcular a constante elástica da mola com a lei de Hooke.

Com base no resultado obtido, descobrimos que a constante elástica da mola é igual a 2000 N/m, logo a alternativa correta é a letra D.

Questão 3 — Uma mola de constante elástica de 500 N/m é pressionada por uma força de 50 N. Com base nessas informações, calcule qual deverá ser, em centímetros, a deformação sofrida pela mola em razão da aplicação dessa força.

a) 100

b) 15

c) 0,1

d) 10

Resolução:

Para calcular a deformação da mola, é necessário utilizar a lei de Hooke e substituir os dados fornecidos no enunciado do exercício. Observe:

Uma vez que o exercício pediu que determinássemos a deformação da mola em centímetros, após termos encontrado o resultado de 0,1 m, tivemos que multiplicá-lo por 100, uma vez que 1 metro tem 100 centímetros. Fazendo isso, descobrimos que a deformação foi de 10 cm, logo a alternativa correta é a letra D.

Publicado por Rafael Helerbrock
Assista às nossas videoaulas

Artigos Relacionados

Energia potencial elástica
Você sabe o que é energia potencial elástica? Confira o conceito, a fórmula, a dedução e exemplos de exercícios resolvidos sobre essa forma de energia.
Leis de Newton
Acesse o artigo e confira uma introdução às leis de Newton, entenda os conceitos de força e aceleração, descubra aplicações, e confira exercícios resolvidos.
Terceira lei de Newton
Clique e confira qual é a terceira lei de Newton. Entenda o que afirma essa lei e qual é a sua fórmula. Veja também exemplos e aplicações dessa lei.
video icon
Escrito"Matemática do Zero | Área de paralelogramo, losango e trapézio" em fundo azul.
Matemática do Zero
Matemática do Zero | Área de paralelogramo, losango e trapézio
Nessa aula veremos a diferença entre paralelogramo, losango e trapézio. Posteriormente, veremos como calcular a área do paralelogramo, área do losango e área do trapézio.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Pessoa com as pernas na água
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
video icon
fone de ouvido, bandeira do reino unido e caderno escrito "ingles"
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
video icon
três dedos levantados
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.