Você está aqui
  1. Mundo Educação
  2. Física
  3. Eletricidade
  4. Segunda Lei de Ohm

Segunda Lei de Ohm

A Segunda Lei de Ohm é usada para calcular o valor da resistência elétrica e depende de alguns fatores geométricos do corpo.

A Segunda Lei de Ohm é uma expressão matemática que relaciona as propriedades físicas que interferem na resistência elétrica de um corpo condutor e homogêneo. Essa lei informa que a resistência elétrica de um corpo é diretamente proporcional ao seu comprimento e resistividade e inversamente proporcional à sua área transversal.

Veja também: Resistência elétrica e temperatura

Essa lei relaciona propriedades geométricas e uma propriedade intrínseca do material que compõe o corpo condutor: a resistividade. Em termos simples, a Segunda Lei de Ohm estabelece que a resistência de um corpo depende de sua composição e do seu formato: quanto maior for a espessura de um fio, por exemplo, menor será a sua resistência elétrica. Observe o esquema a seguir:

Na figura acima, são mostradas as principais grandezas geométricas que definem a resistência elétrica de um corpo homogêneo.
Na figura acima, são mostradas as principais grandezas geométricas que definem a resistência elétrica de um corpo homogêneo.

Fórmula da Segunda Lei de Ohm
 


Legenda:
R – resistência elétrica (Ω – omhs)
ρ – resistividade (Ω.m – ohms vezes metro)
l – comprimento do corpo (m – metros)
A – área transversal do corpo (m² – metros quadrados)

A resistividade, representada pela letra ρ, é uma propriedade do material que depende de características microscópicas, como a quantidade de portadores de carga (elétrons, no caso dos metais) disponíveis para condução e o tempo em que essas cargas elétricas são conduzidas no corpo sem colidirem-se com a sua rede cristalina (distribuição espacial de átomos). Além disso, a resistividade é definida como o inverso da condutividade de um corpo.
 

σ – condutividade (Ω-1.m-1 inverso de ohms vezes metro)

Devemos lembrar que, no caso de fios, os quais geralmente apresentam formatos cilíndricos, suas áreas transversais são circulares e podem ser calculadas pela fórmula a seguir:
 

Tabela de resistividade

A resistividade é uma das grandezas físicas com o maior espectro de valores, podendo variar entre as ordens de grandeza de 10-6 até 1018. A tabela a seguir apresenta os valores de resistividade para alguns materiais conhecidos.

Material

Resistividade (Ω.m)

Prata

1,6.10-6

Cobre

1,7.10-6

Alumínio

2,8.10-6

Quartzo fundido

75.1018

A partir da tabela acima, é possível entender a escolha do cobre para produzir os fios presentes nos postes. Além do baixo custo, esse metal apresenta um baixo valor de resistividade, diminuindo assim a quantidade de energia perdida no processo de transmissão de eletricidade.

Não pare agora... Tem mais depois da publicidade ;)

Primeira lei de Ohm

Ao todo existem duas leis de Ohm e ambas valem somente para resistores ôhmicos (apresentam resistência elétrica constante durante um intervalo expressivo de tensões elétricas e temperaturas). Todo resistor ôhmico pode ser representado por um gráfico de potencial elétrico e corrente elétrica em forma de reta. Além disso, a expressão utilizada pela Primeira Lei de Ohm é a seguinte:
 


Legenda:

R – resistência elétrica (Ω – ohms)
U – tensão ou potencial elétrico (V – Volts)
i – corrente elétrica (A – Ampéres)
 

Para calcular a Primeira Lei de Ohm, basta excluir a variável que você desconhece no triângulo.
Para calcular a Primeira Lei de Ohm, basta excluir a variável que você desconhece no triângulo.

Exercícios sobre a Segunda Lei de Ohm

Um fio de cobre de área transversal igual a 10-4 m² e de comprimento igual a 2,5 m é ligado em uma tensão elétrica de 2,0 V. Determine:

a) a resistência elétrica do fio.

b) a corrente elétrica formada no fio.

c) a resistência do fio caso o seu diâmetro fosse dobrado.

Resolução:

a) Para calcular a resistência elétrica desse fio de cobre, utilizaremos a Segunda Lei de Ohm:
 

De acordo com o enunciado, a área transversal do fio é de 10-4 m², a resistividade do cobre, segundo a tabela fornecida neste texto, é de 1,7.10-6 Ω.m, e o seu comprimento é de 2,5 m. Assim, temos que:
 

b) Para calcular o valor da corrente elétrica formada no fio, aplicaremos a Primeira Lei de Ohm:
 

Para a tensão elétrica informada pelo enunciado, de 2,0 V, teremos a seguinte corrente elétrica:
 

c) Se dobrássemos o diâmetro desse fio, também estaríamos dobrando o valor do seu raio. Como sabemos, a área da circunferência é determinada pela seguinte relação:

Área transversal do fio

Portanto, sua área seria 4 vezes maior. Como a resistência do fio é inversamente proporcional à área, sua nova resistência seria 4 vezes menor, cerca de 0,0106 Ω.

De acordo com a Segunda Lei de Ohm, a resistência de um fio será tão menor quanto maior for a sua espessura.
De acordo com a Segunda Lei de Ohm, a resistência de um fio será tão menor quanto maior for a sua espessura.
Publicado por: Rafael Helerbrock
Artigo relacionado
Teste agora seus conhecimentos com os exercícios deste texto
Assista às nossas videoaulas
Lista de Exercícios

Questão 1

(Mackenzie-SP) Dois resistores, de resistências elétricas R1 e R2, são formados por fios metálicos, de mesmo comprimento e mesmo diâmetro, e são constituídos de materiais cujas resistividades são ρ1 e ρ2 respectivamente. Quando esses resistores são associados em paralelo e submetidos a uma bateria de tensão elétrica U, a corrente que passa pelo fio de resistência elétrica R2 é o dobro da que passa por R1. Nessas condições, a relação entre as resistividades dos materiais é

a) ρ1 = ρ2

b) ρ2 = 2. ρ1

c) ρ1 = 2. ρ2

d) ρ1 = 4. ρ2

e) ρ2 = 4. ρ1

Questão 2

(UFRGS) No circuito esquematizado abaixo, R1 e R2 são resistores com a mesma resistividade ρ. R1 tem comprimento 2L e seção transversal A, e R2 tem comprimento L e seção transversal 2A.

Nessa situação, a corrente elétrica que percorre o circuito é

a) 2AV/(5 ρ L).

b) 2AV/(3 ρ L).

c) AV/(ρ L).

d) 3AV/(2 ρ L).

e) 5AV/(2 ρ L).

Mais Questões
Assuntos relacionados
Para funcionar corretamente, o galvanômetro no centro da ponte de Wheatstone deve indicar uma corrente elétrica nula.
Ponte de Wheatstone
Você sabe o que é e para que serve uma ponte de Wheatstone? Acesse o artigo e conheça mais detalhes sobre esse tipo de circuito.
Os amperímetros são utilizados para realizar medidas de corrente elétrica.
Amperímetro
Você sabe o que é, pra que serve e como funciona o amperímetro? Entenda as fórmulas dos amperímetros e aprenda como eles devem ser ligados aos circuitos elétricos.
Efeito Joule é o fenômeno que causa o aquecimento e derretimento da camada protetora dos fios.
Efeito Joule
Você sabe o que é efeito Joule? Conheça as suas utilidades, fórmulas usadas para calculá-lo, os riscos relacionados a ele e também alguns exercícios resolvidos.
Corrente elétrica
Você sabe o que é corrente elétrica? Conheça o conceito, as fórmulas, os tipos de corrente e exercícios resolvidos.
Lei de Pouillet
Acesse o texto e conheça a definição da lei de Pouillet. Aprenda a calcular a corrente elétrica em circuitos simples com ela e com nossos exercícios resolvidos sobre o tema.
Resistividade
Resistividade, resistência, reostato, reostato de variação descontínua, reostato de variação contínua, condutor, corrente elétrica, resistência elétrica específica, o que é resistividade.
Resistores
Acesse o texto e conheça diferentes tipos de resistor. Aprenda quais são as leis de Ohm e o que são associações de resistores em série e em paralelo.
A equação acima é reconhecida como sendo a 1ª Lei de Ohm, mas ela pode ser aplicada a elementos não ôhmicos
Primeira lei de Ohm
Clique aqui e entenda a Primeira lei de Ohm, que mostra a relação diretamente proporcional entre a corrente elétrica e a diferença de potencial (ddp).
Potencial elétrico em um ponto P gerado por uma carga Q a uma distância d
Potencial elétrico em um ponto P
Cálculo do potencial elétrico gerado em um ponto P por uma carga puntiforme.
Filamento de uma lâmpada de tungstênio
Resistência elétrica e temperatura
Veja aqui como é feita a relação entre a resistência elétrica e a temperatura de um material.