Whatsapp icon Whatsapp

Arranjo com repetição

O arranjo com repetição é um tipo de agrupamento estudado na análise combinatória e bastante comum no nosso cotidiano, como na contagem da quantidade de senhas possíveis.
A quantidade de senhas possíveis pode ser calculada por arranjo com repetição.
A quantidade de senhas possíveis pode ser calculada por arranjo com repetição.

O arranjo com repetição é um tipo de agrupamento estudado na análise combinatória. Conhecemos como arranjo com repetição ou arranjo completo todas as sequências que podemos formar com determinada quantidade de elementos de um conjunto, admitindo elementos repetidos nessa sequência.

Um exemplo cotidiano de arranjo com repetição são as senhas dos cartões. Elas são compostas, por exemplo, por uma sequência de 4 algarismos. Sabemos que nas senhas a ordem é importante, o que faz com que essa situação seja um arranjo com repetição ou arranjo completo. Para calcular um arranjo completo de todos os k elementos escolhidos em um conjunto de n elementos, utilizamos a fórmula ARn,k = nk.

Leia também: Combinação com repetição — outro agrupamento estudado na análise combinatória

Resumo sobre arranjo com repetição

  • O arranjo com repetição é um tipo de agrupamento estudado na análise combinatória.

  • É conhecido também como arranjo completo.

  • Representa todas as sequências de k elementos que podemos formar com os n elementos de um conjunto.

  • A fórmula do arranjo com repetição é: ARn,k = nk

O que é um arranjo com repetição?

Chamamos de arranjo com repetição, ou arranjo completo, todas as sequências que podemos formar com k elementos de um conjunto com n elementos, sendo que um mesmo elemento pode aparecer mais de uma vez. Estamos cercados de sequências no nosso cotidiano, como na contagem da quantidade de senhas existentes em um determinado sistema, ou então na quantidade de veículos que podem ser emplacados em uma cidade, dentre várias outras situações.

Exemplo:

Quantos números de dois algarismos podemos formar com os números 1, 2, 3 e 4?

Resolução:

Primeiramente, listaremos todos os números possíveis. São eles:

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44.

Note que foram formados agrupamentos compostos por 2 elementos entre os 4 do conjunto, podendo ou não haver repetição. Nessa situação, é possível formar 16 números.

Não pare agora... Tem mais depois da publicidade ;)

Fórmula do arranjo com repetição

Acontece que nem sempre temos essa facilidade em listar todos os agrupamentos possíveis. Muitas vezes, também, nosso interesse não está relacionado à lista do total de agrupamentos em si, mas sim na quantidade de arranjos com repetição que podemos formar em determinado contexto. Para calcular a quantidade de arranjos com repetição de n elementos tomados de k em k, utilizamos a fórmula:

ARn,k = nk

  • AR → arranjo com repetição ou arranjo completo;

  • n → quantidade de elementos no conjunto;

  • k → quantidade de elementos em cada agrupamento.

Leia também: Como calcular arranjo simples?

Cálculo do número de um arranjo com repetição

Para encontrar a quantidade de agrupamentos possíveis a partir do conhecimento da fórmula do arranjo com repetição, basta identificarmos o valor de n e de k e substituí-los nessa fórmula.

Exemplo:

Em determinado servidor de um jogo online, na fase teste os jogadores são identificados por uma sequência de 3 símbolos, distintos ou não, dentre os seguintes: @, $, #, !, Σ, ∞. Qual é a quantidade máxima de jogadores que podem entrar no servidor durante a fase teste?

Resolução:

Note que os símbolos podem ser distintos ou não, então o arranjo de um jogador pode ter repetições. Além disso, como estamos formando sequências, a ordem é importante. Logo, se trata de um arranjo completo de 6 elementos tomados de 3 em 3.

  • AR6,3 = 6³

  • AR6,3= 216

Dessa forma, há 216 identificações possíveis.

Videoaula sobre arranjo e combinação

Exercícios resolvidos sobre arranjo com repetição

Questão 1

Para se cadastrar em um site, Kárita precisa elaborar uma senha que seja composta por no mínimo 4 e no máximo 6 dígitos. Sabendo que em suas senhas a ela utiliza somente os algarismos da data de nascimento do seu filho Heitor, que é 24/08/2016, a quantidade de senhas distintas que Kárita pode formar é:

A) 615
B) 46 + 56 + 66
C) 6 · 15
D) 64 + 65 + 66
E) 415

Resolução:

Alternativa D

Os algarismos a serem utilizados são 0, 1, 2, 4, 6 e 8. Logo, há 6 possibilidades, ou seja, n = 6.

Suponha que a senha tem 4 algarismos, então o número de senhas possíveis é:

AR6,4 = 64

Suponha que a senha tem 5 algarismos:

AR6,5 = 65

Agora, suponha que a senha tem 6 algarismos:

AR6,6 = 66

Portanto, o número de senhas distintas possíveis é igual a:

64 + 65 + 66

Questão 2

Em determinada cidade, foi proferida uma liminar que obriga que todas as bicicletas devem ser emplacadas. Para escolher o formato da placa, foram apresentadas algumas opções:

I → 4 letras

II → 3 letras e 1 algarismo

III → 2 letras e 2 algarismos

IV → 1 letra e 3 algarismos

V → 4 algarismos

Para escolher o tipo de placa, ficou decidido que a quantidade de placas possíveis deveria ser superior a 100 mil e inferior a 200 mil. Assim, o tipo de placa recomendado é:

A) I
B) II
C) III
D) IV
E) V

Resolução:

Alternativa B

Para encontrar o tipo de placa que atende a demanda da cidade, calcularemos a quantidade de placas possíveis para cada caso. Há 26 letras e 10 algarismos possíveis.

I → 4 letras

AR26,4 = 264 = 456976

II → 3 letras e 1 algarismo

AR26,3 · AR10,1 = 26³ · 10 = 175760

III → 2 letras e 2 algarismos

AR26,2 · AR10,2 = 26² · 10² = 67600

IV → 1 letra e 3 algarismos

AR26,1 · AR10,3 = 26 · 10³ = 26000

V → 4 algarismos

AR10,4 = 104 = 10000

A placa que atende a demanda é a do tipo II.

Publicado por Raul Rodrigues de Oliveira
Assista às nossas videoaulas

Artigos Relacionados

Análise Combinatória
Aprenda o que é análise combinatória e quais são os principais tipos de agrupamento. Entenda também o que é o princípio fundamental da contagem e como utilizá-lo.
Fórmula do arranjo simples.
Arranjo simples
Conheça a fórmula para se calcular os arranjos simples. Aprenda a diferença entre arranjo simples e combinação simples. Resolva problemas envolvendo arranjo simples.
O lançamento de dados é um exemplo de combinação com repetição.
Combinação com repetição
Aprenda o que é combinação com repetição. Veja qual é a sua fórmula e em quais situações esse tipo de agrupamento é utilizado. Resolva os exercícios sobre o tema.
A combinação é um tipo de agrupamento da análise combinatória.
Combinação simples
Aprenda o que é a combinação simples e conheça a fórmula utilizada para resolver problemas utilizando esse agrupamento. Veja a diferença entre combinação e arranjo.
Princípio Fundamental da Contagem e Fatorial
Introdução ao estudo da análise combinatória.
video icon
Matemática
Matemática do Zero | Jogo de Sinais
Nesta aula, aprenderemos as regras do jogo de sinais em operações entre números inteiros. Veremos as regras básicas para adição, subtração, multiplicação e divisão.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Videoaula Brasil Escola
Matemática
Área da esfera
Clique para aprender a calcular a área da esfera.
video icon
Videoaula Brasil Escola
Inglês
Estrangeirismo
Nessa videoaula você entende sobre o estrangeirismo na música "Samba do Approach."
video icon
videoaula brasil escola
História
Crise de 1929
A quebra da bolsa de valores de Nova Iorque afetou não só os EUA, como o mundo. Entenda!