Whatsapp icon Whatsapp

Combinação simples

Combinação simples é um tipo de agrupamento da análise combinatória. A combinação de n elementos tomados de k em k são os subconjuntos que formamos com k elementos.
A combinação é um tipo de agrupamento da análise combinatória.
A combinação é um tipo de agrupamento da análise combinatória.

A combinação é um dos tipos de agrupamentos estudados na análise combinatória. Está presente em várias situações do dia a dia, como nos jogos mais comuns de carta, por exemplo, truco, poker, nos jogos de loteria, entre várias outras situações cotidianas. Combinação são todos os subconjuntos que podemos formar com uma quantidade de elementos de um conjunto maior, por exemplo, todas as combinações possíveis com 5 cartas, entre as 52 cartas do baralho.

Na combinação se ressalta que a ordem não é importante, ou seja, o conjunto formado pelos elementos {A, B, C} é o mesmo independentemente da ordem desses elementos. Em um agrupamento, quando a ordem é importante, não estamos tratando de uma combinação, mas sim de um arranjo, sendo essa a principal diferença entre esses dois tipos de agrupamentos.

Leia também: O que é permutação simples?

Resumo sobre combinação simples

  • A combinação é um tipo de agrupamento estudado na análise combinatória.

  • Na combinação a ordem dos elementos não é relevante, ou seja, o agrupamento (A, B) e o agrupamento (B, A) são um único agrupamento.

  • Para calcular todos as combinações possíveis de n elementos tomados de k em k, utilizamos a fórmula:

Fórmula da combinação simples.

  • Aplicamos as combinações em jogos da loteria, jogos de carta, entre outros vários problemas em que montamos agrupamentos não ordenados.

  • No arranjo, diferentemente da combinação, a ordem dos elementos é relevante, ou seja, trocar os termos de ordem gera agrupamentos diferentes.

Não pare agora... Tem mais depois da publicidade ;)

O que é combinação simples?

Você já se perguntou quantos resultados possíveis existem para o tão sonhado prêmio da loteria, ou então de quantas maneiras diferentes um time de vôlei pode ser formado com os jogadores convocados? Essas são algumas entre várias situações do dia a dia que podem ser respondidas por meio do estudo das combinações.

A combinação simples é estudada pela análise combinatória, que busca desenvolver técnicas de contagem para calcular a quantidade de agrupamentos não ordenados que podemos formar escolhendo uma quantidade de elementos de um conjunto. Por exemplo, para sabermos quantos resultados distintos podem haver para um sorteio de um determinado jogo de loteria, calculamos, com a combinação, quantos agrupamentos possíveis podemos formar com 6 números entre os números de 1 a 60.

No sorteio, a ordem não importa, independentemente de quais números sejam sorteados primeiro. O conjunto formado pelos 6 números é o que importa, e assim é para todas as combinações, ou seja, na combinação, a ordem dos elementos do agrupamento não é relevante, e a troca desses elementos de ordem não gera um novo agrupamento. Por exemplo, o resultado {2, 4, 6, 1, 5, 3} é o mesmo agrupamento que o {1, 2, 3, 4, 5, 6}.

Vejamos um exemplo simples, considerando que serão sorteados 2 números entre os 6 primeiros números naturais, vamos listar todas as combinações possíveis.

{1, 2}; {1, 3}; {1, 4}; {1, 5}; {1, 6}; {2, 3}; {2, 4}; {2, 5}; {2, 6}; {3, 4}; {3, 5}; {3, 6}; {4, 5}; {4, 6} e {5, 6}.

É importante lembrar que {1, 2} ou {2, 1}, por exemplo, na combinação simples, formam o mesmo agrupamento.

Então, nesse exemplo listamos todas as combinações possíveis, e, ao realizar a contagem, contamos quantas combinações existem de 6 elementos tomados de 2 em 2, o que deu um total de 15 combinações possíveis.

Acontece que nem sempre escrever essa lista é uma tarefa fácil, além disso, muitas vezes o interesse não está na lista em si, mas sim no total de combinações possíveis, e para isso existe uma fórmula.

Qual a fórmula da combinação simples?

De modo geral, calculamos o total de combinações possíveis de n elementos tomados de k a k, e, para realizar esse calculo, utilizamos a seguinte fórmula:

Fórmula da combinação simples.

Lê-se: Combinação de n elementos tomados de k em k.

Veja também: 3 erros mais cometidos no cálculo de probabilidade

Passo a passo para calcular uma combinação simples

Para calcular o total de combinações possíveis, basta realizar a substituição na fórmula e calcular os fatoriais necessários.

Exemplo:

Calcule todas as combinações possíveis de 10 elementos tomados de 4 em 4.

1º passo: identificar o valor de n e de k e substituir na fórmula.

No caso temos n = 10 e k = 4.

Cálculo da combinação simples de um conjunto com 10 elementos tomados de 4 em 4.

2º passo: realizaremos a simplificação do fatorial, multiplicando o numerador pelos seus antecessores até chegar ao maior fatorial do denominador.

Nesse caso simplificaremos 10!, multiplicando 10 por seus antecessores até chegar a 6!, e fazendo a simplificação no numerador e no denominador.

Simplificação de fatoriais no cálculo de combinação simples.

3º passo: realizar a multiplicação do numerador e calcular o fatorial do denominador, e, posteriormente, realizar a divisão.

Resolução de fração após a simplificação de fatoriais em cálculo de combinação simples.

Desse modo, significa que existem 210 combinações possíveis para 10 elementos tomados de 4 em 4.

Diferença entre arranjo simples e combinação simples

Em situações que envolvem análise combinatória, é de grande importância compreender quando utilizaremos arranjo ou combinação para contar o total de agrupamentos possíveis. Para tomar essa decisão, basta analisar se na situação a ordem dos elementos gera novos agrupamentos ou não:

  • Arranjo: situações que envolvem ordem;

  • Combinação: situações cuja ordem não é relevante.

Vimos alguns exemplos de combinação ao decorrer do texto, agora vejamos alguns exemplos de arranjo: se existe uma disputa entre 10 atletas, de quantas maneiras distintas pode ser formado o pódio? De quantas maneiras uma pessoa pode montar uma senha sabendo que ela deve ter 4 dígitos, todos distintos? Note que, em ambas as situações, a ordem é importante.

Existem várias outras situações que podem ser resolvidas por meio da fórmula do arranjo, que é a fórmula a seguir:

Fórmula de arranjo simples.

  • Videoaula sobre arranjo e combinação

Exercícios resolvidos

Questão 1 - (Enem) Doze times se inscreveram em um torneio de futebol amador. O jogo de abertura do torneio foi escolhido da seguinte forma: primeiro foram sorteados 4 times para compor o Grupo A. Em seguida, entre os times do Grupo A, foram sorteados 2 times para realizar o jogo de abertura do torneio, sendo que o primeiro deles jogaria em seu próprio campo, e o segundo seria o time visitante.

A quantidade total de escolhas possíveis para o Grupo A e a quantidade total de escolhas dos times do jogo de abertura podem ser calculadas através de

A) uma combinação e um arranjo, respectivamente.

B) um arranjo e uma combinação, respectivamente.

C) um arranjo e uma permutação, respectivamente.

D) duas combinações.

E) dois arranjos.

Resolução

Alternativa A

Note que serão escolhidos dois agrupamentos. No primeiro será escolhido 4 times para compor o grupo A, note que, nesse caso, a ordem não é relevante, logo, trata-se de uma combinação.

Já no segundo agrupamento, o primeiro time jogará em seu próprio campo, o que torna a ordem relevante, então, será um arranjo.

Assim, temos uma combinação e um arranjo respectivamente.

Questão 2 - Como prêmio pelo grande sucesso da Rede Omnia, os funcionários participarão de um sorteio em que os vencedores serão contemplados com uma viagem de férias em um cruzeiro pelo litoral do nordeste brasileiro com tudo pago. Sabendo que 2 funcionários serão sorteados, e que participarão do sorteio 15 colaboradores, quantos são os resultados possíveis para esse sorteio?

A) 52

B) 105

C) 170

D) 215

E) 310

Resolução

Alternativa B

Calcularemos a combinação de 15 elementos tomados de 2 em 2.

Resolução de exercício de combinação de agrupamento com 15 elementos tomados de 5 em 5.

Publicado por Raul Rodrigues de Oliveira
Assista às nossas videoaulas

Artigos Relacionados

Anagrama
Você sabe o que é um anagrama? Clique aqui e aprenda a calculá-lo!
A quantidade de senhas possíveis pode ser calculada por arranjo com repetição.
Arranjo com repetição
Aprenda a fórmula para calcular o arranjo com repetição. Saiba identificar situações em que podemos aplicá-lo. Confira ainda exemplos práticos!
Fórmula do arranjo simples.
Arranjo simples
Conheça a fórmula para se calcular os arranjos simples. Aprenda a diferença entre arranjo simples e combinação simples. Resolva problemas envolvendo arranjo simples.
O lançamento de dados é um exemplo de combinação com repetição.
Combinação com repetição
Aprenda o que é combinação com repetição. Veja qual é a sua fórmula e em quais situações esse tipo de agrupamento é utilizado. Resolva os exercícios sobre o tema.
Como se tornar um vidente na Copa do Mundo?
Como a Matemática pode tornar você um vidente na Copa do Mundo
Descubra como a Matemática pode tornar você um vidente na Copa do Mundo e aprenda um pouco de análise combinatória nesse processo.
Critérios para identificação de arranjo ou combinação
Critérios para diferenciar arranjo e combinação.
Equações envolvendo o fatorial
Manipulações algébricas de um número fatorial para resoluções de equações fatoriais. Resolvendo equações que possuem incógnitas com fatorial.
Permutação Envolvendo Elementos Repetidos
Técnicas para a formação de anagramas com elementos repetidos.
Fórmula da permutação simples.
Permutação simples
Conheça a permutação simples e aprenda a calculá-la. Utilize a fórmula da permutação para resolver problemas. Calcule a permutação com repetição.
Princípio Fundamental da Contagem e Fatorial
Introdução ao estudo da análise combinatória.
O triângulo de Pascal é utilizado na resolução de problemas de combinação.
Triângulo de Pascal
Entenda o que é o triângulo de Pascal e como construí-lo, além de conhecer suas principais aplicações e propriedades.
video icon
Português
Nove noites | Análise Literária [Fuvest]
Assista à nossa videoaula para conhecer um pouco mais da obra “Nove noites”, do escritor e jornalista Bernardo Carvalho. Confira nossa análise!

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
videoaula brasil escola
Química
Cinética química
Se ainda tem dúvidas quanto a velocidade das reações, essa videoaula é para você!
video icon
videoaula brasil escola
Português
Redação
Entenda como realizar argumento por causa e consequência com a nossa aula.
video icon
videoaula brasil escola
História
Crise de 1929
A quebra da bolsa de valores de Nova Iorque afetou não só os EUA, como o mundo. Entenda!